
1.  Introduction
Long-term forecasts of the atmosphere at sub-seasonal, seasonal, and decadal time scales are affected by both 
the choice of the initial condition and the slow evolution of surface boundary conditions. This multi-timescale 
forecasting is a key target of the atmospheric and climate communities (Cassou et al., 2018; Vitart et al., 2017). 
Forecast error grows quickly at increasing lead times due to the instability properties of weather dynamics. For 
this reason, a probabilistic approach is necessary in order to isolate the multiple possible outcomes of a set of 
forecasts. Since the 1990s, such an approach has been developed in many operational weather prediction centers 
based on using multiple numerical integrations of the models starting from slightly different initial conditions. 
This approach is known as ensemble forecasting (Buizza, 2019; Kalnay, 2019). Different perturbation techniques 
have been designed for initializing ensemble weather forecasts, of which the most popular are the singular vectors 
(Molteni et al., 1996), the bred modes (Toth & Kalnay, 1997), and perturbed observations applied within data 
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assimilation systems (Buizza et al., 2005; Kleist & Ide, 2015). Buizza et al. (2005) noted that the accuracy of 
initial conditions is just as important as the accuracy of the forecast models for generating reliable ensemble 
forecasts.

As operational centers expanded their focus to include longer forecast horizons, the same perturbation approaches 
were also used for sub-seasonal to decadal predictions. However, at timescales beyond the limits of predictability 
for the atmosphere, coupled Earth system models must be used. This introduces the additional difficulty of build-
ing appropriate perturbations for the different components of such multi-scale systems (O’Kane et al., 2019). 
Several approaches consisting of appropriately tuning the bred modes to capture the long time scales of the 
dynamics have for instance been proposed (O’Kane et al., 2019; Peña & Kalnay, 2004; Yang et al., 2008), and 
the use of backward Lyapunov vectors (BLV), closely related to the bred modes, have been used to build reliable 
ensemble forecasts in idealized scenarios (Vannitsem & Duan, 2020). Recently, it has been proposed to project 
ensemble forecasts into particular subspace spanned by oscillatory modes, and to incorporate the additional infor-
mation of these modes in data assimilation as well (Bach et al., 2021).

In the present work, we address this ensemble initialization problem by considering tools coming from the proba-
bilistic description of dynamical systems and finding their roots in the conservation of the number of trajectories 
in phase space described by the Liouville equation (Gaspard, 2005; Nicolis & Nicolis,  2012). The evolution 
operator associated with this equation is known as the Perron-Frobenius operator (Lasota & Mackey, 2008), 
sometimes also called the transfer operator. It has been used as a theoretical framework to describe probabilistic 
forecasting (Ehrendorfer, 2006; Giannakis, 2019), that is, forecasting based on the time evolution of a proba-
bility distribution, and for which the ensemble forecasting methods provide approximations. The adjoint of the 
Perron-Frobenius operator, known as the Koopman operator, has become popular to describe the dynamics of 
observables on attractors (Arbabi & Mezić, 2017; Mezić, 2013; Santos Gutiérrez et al., 2021; Susuki et al., 2016), 
due to the fact that when operating on functional spaces it is a linear operator, an observable being defined as any 
function mapping the system state to some real or complex value. A trade-off, however, in converting the nonlin-
ear dynamics to a linear representation is that the Koopman operator generally acts on an infinite dimensional 
space, but as we will see, methods exist to obtain finite-dimensional approximate representations of these opera-
tors. The computation of the spectrum of these operators has also been considered in order to study bifurcations 
in low- and high-dimensional systems (Tantet, Lucarini, & Dijkstra, 2018; Tantet, Lucarini, Lunkeit, & Dijk-
stra, 2018). The eigenvalues and eigenfunctions of these operators can be obtained in the functional spaces, and 
provide the key building blocks of the dynamics of the probability density and observables. These are precisely 
the quantities that are used in the present work to generate the ensemble forecasts initialization, as they constitute 
generic features of the dynamics of the probability density.

The eigenfunctions of the Koopman operator can be approximated using Dynamic Mode Decomposition (DMD) 
(Rowley et al., 2009; Tu et al., 2014). The DMD approach is a rediscovery of the Linear Inverse Model (LIM), 
which was developed first within the seasonal prediction community (Penland, 1989; Penland & Magorian, 1993; 
Penland & Sardeshmukh, 1995). For computational efficiency, and due to the large volume of data involved, 
LIMs are typically formed using data projected to the space of Empirical Orthogonal Functions (EOFs) and then 
truncated. As such, a mathematical equivalence between this form of the LIM and the projected DMD was noted 
by Tu et al. (2014). The LIM approach is now being used experimentally for seasonal forecasts by the US National 
Oceanographic and Atmospheric Administration (NOAA) Climate Prediction Center (Wang et al., 2021). Since 
its rediscovery by the fluid mechanics community under the name of DMD (Schmid, 2010), many new algo-
rithms, theoretical results, and variants have been developed that have advanced understanding of this approach. 
Most notably, perhaps, is the connection between DMD and the Koopman operator (Rowley et al., 2009).

The usefulness of the Perron-Frobenius and Koopman operators for producing ensemble forecasts will be 
analyzed in a reduced order coupled ocean-atmosphere model, previously demonstrated for a similar purpose 
by Vannitsem and Duan (2020). The model will be briefly described in Section 2. The experimental setup will 
be then presented in Section 3. In Section 4, the different bases onto which the perturbed initial conditions are 
projected will be presented: first, the EOFs that are often used in initializing climate models and their ensemble 
integrations, for example, Polkova et al. (2019); second, the Lyapunov vector approach used by Vannitsem and 
Duan (2020), which is closely related to the bred modes and ensemble Kalman filters; and third, the eigenfunc-
tions of the Koopman and Perron-Frobenius operators. The Koopman and Perron-Frobenius operators are exten-
sively discussed, as important clarifications on their link with DMD is needed. Section 5 describes the specific 
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choices of bases used for the experiments. Section 6 presents the results of experiments using the aforementioned 
bases to initialize ensemble forecasts. It will be shown that the eigenfunctions of the Koopman and Perron-Frobe-
nius operators are indeed the most efficient tools for producing reliable ensemble forecasts in such multiscale 
systems. Finally, conclusions are drawn in Section 7.

2.  The Coupled Ocean-Atmosphere Model
Experiments are conducted with a coupled ocean–atmosphere model that was first introduced by Vannitsem 
et al. (2015), and was further generalized by De Cruz et al. (2016) and Demaeyer et al. (2020). It consists of a 
two-layer quasi-geostrophic atmospheric model coupled both thermally and mechanically to a shallow-water 
oceanic component on a beta plane. The coupling between the ocean and the atmosphere includes the wind stress 
and heat exchanges. The fields of the model are defined on a rectangular domain with the zonal and meridional 
coordinates x and y being restricted to 0 ≤ x ≤ 2πL/n and 0 ≤ y ≤ πL, where n is the aspect ratio of the domain and 
L is the characteristic spatial scale. The atmospheric fields are defined in a zonally periodic channel with no-flux 
boundary conditions in the meridional direction, that is, if ψ is such an atmospheric field then ∂ψ/∂x = 0 at y = 0, 
πL. The oceanic fields are defined on a closed basin, with no flux through the boundaries.

The model fields include the atmospheric barotropic ψa and baroclinic streamfunctions θa, and the ocean stream-
function ψo and the temperature field θo. These fields are expanded in series of Fourier modes Fi(x, y) for the 
atmosphere and ϕi(x, y) for the ocean, both respecting the prescribed boundary conditions:

�a(�, �) =
�a
∑

�=1
�a,� ��(�, �)

�a(�, �) =
�a
∑

�=1
�a,� ��(�, �)

�o(�, �) =
�o
∑

�=1
�o,� ��(�, �)

�o(�, �) =
�o
∑

�=1
�o,� ��(�, �)

�

after projecting the partial differential equations of the model on the Fourier modes, one obtains a set of ordinary 
differential equations (ODEs) governing the time evolution of the coefficients ψa,i, θa,i, ψo,i and θo,i:

�̇ = � (�)

� =
[

�a,1,… , �a,�a , �a,1,… , �a,�a ,

�o,1,… , �o,�o , �o,1,… , �o,�o
]�

� (1)

𝐴𝐴 where
𝖳𝖳 denotes the matrix transposition operation. These coefficients thus form the set of the model state varia-

bles and the equation above allows one to simulate the physical system using numerical integration. In the pres-
ent study, we consider the so-called VDDG model configuration first defined by Vannitsem et al. (2015), with 
the atmospheric and the oceanic fields each being expanded into a series of na = 10 and no = 8 selected modes, 
respectively, leading to a system with d = 36 dimensions. In the following, the letter d will always refer to the 
dimension of the dynamical system.

A critical parameter of the model is the friction coefficient C between the ocean and the atmosphere. Indeed, it 
was shown by Vannitsem et al. (2015) that the strength of the wind stress controls the presence and the amplitude 
of a low-frequency variability (LFV) typically found in the real atmosphere at midlatitude. Following Vannit-
sem (2017) and Vannitsem and Duan (2020), we shall consider two cases: one with weak LFV (C = 0.01 kg m −2 
s −1) and another with much more pronounced LFV (C = 0.016 kg m −2 s −1). Solutions of the models for both 
cases are depicted in Figure 1, where the difference in the amplitude of LFV between the left and right panels 
is clear. The variables shown in this figure are the coefficients corresponding to the first mode of the baroclinic 
streamfunction and the second mode of the ocean temperature field, each sampled every Δt = 10 nondimensional 
model timeunits (MTU), corresponding to 1.1215 days. The former mode is related to the meridional temperature 
gradient in the system, while the second corresponds to a dominant double-gyre signal in the ocean.
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These two cases will allow us to highlight how the different methods of initialization that we consider perform 
in different settings, with different timescales and different correlation structures between the components being 
involved.

3.  Experiment Design
The focus of this study is initialization methods for ensemble forecasts. To this end, the long reference runs 
depicted in Figure 1 were computed to serve as the ‘‘truth’’ in our experiments. We select N points of the refer-
ence runs, denoted xn (0), as initial conditions to produce N ensemble forecasts with the VDDG model, using the 
same parameters as the reference runs. To ensure that the experiments are initialized from a state close to the 
true trajectory, but with an ensemble mean state that is not precisely equal to the truth, we first obtain the initial 
conditions 𝐴𝐴 𝒙𝒙

ctrl
𝑛𝑛  of a deterministic control forecast by perturbing the N points of the reference ‘‘truth’’ by a random 

perturbation 𝐴𝐴 𝜹𝜹𝜹𝜹
ctrl

0
 sampled from a uniform distribution 𝐴𝐴 𝐴𝐴

pert

0
 :

𝒙𝒙
ctrl
𝑛𝑛 (0) = 𝒙𝒙𝑛𝑛(0) + 𝜹𝜹𝜹𝜹

ctrl

0
, 𝑛𝑛 = 1,… , 𝑁𝑁𝑁� (2)

An ensemble is then generated by perturbing the control run initial conditions with a set of M − 1 perturbations 
𝐴𝐴 𝜹𝜹𝜹𝜹

𝑚𝑚

0
 drawn from a distribution 𝐴𝐴 𝐴𝐴𝐴

pert

0
 , which is taken to be the same distribution as that used to obtain the control: 

𝐴𝐴 𝐴𝐴𝐴
pert

0
≡ 𝜌𝜌

pert

0
 . The initial conditions of the ensemble are thus:

𝒚𝒚
𝑚𝑚𝑚𝑚𝑚

(0) = 𝒙𝒙
ctrl
𝑛𝑛 (0) + 𝜹𝜹𝜹𝜹

𝑚𝑚

0
, 𝑚𝑚 = 1,… ,𝑀𝑀 − 1.� (3)

Including the control run, that is, 𝐴𝐴 𝜹𝜹𝜹𝜹
𝑀𝑀

0
= 0 , this provides a reference perfect ensemble of M members. In the 

present study, as in Vannitsem and Duan (2020), a uniform distribution defined on the interval [−ɛ/2, ɛ/2] with 
ɛ = 10 −6 was used to perturb each component of the system's state vector. Additional computations done with 
Gaussian distributions with the same standard deviation did not show any differences in the results of the study.

Due to the high dimensionality of more realistic applications, and the cost involved in integrating long model 
forecasts of that size, ensemble perturbations must be built from a relatively small subspace of the original 
system. While this distribution could be sampled randomly, we seek a set of initial conditions that can efficiently 
reproduce the true error growth characteristics of the coupled system dynamics. The question remains as to 
what bases are most efficient for initializing a reliable ensemble forecast, and how can those bases be practically 
constructed in a realistic setting.

Figure 1.  Time evolution of a trajectory on the attractor for: (a),(b) the case with weak low-frequency variability and (c),(d) 
the case with strong low-frequency variability. For this latter case, it shows that the presence or absence of atmospheric 
instability and fast variability is linked to the low-frequency variation of the meridional temperature gradient in the ocean.
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We examine ensembles constructed using linear projections of the ‘‘perfect’’ ensemble M initial conditions onto 
various bases forming subspaces with dimension less than the dimension of the phase space d, and compare these 
to the perfect ensemble as a benchmark. The specific bases that we use will be detailed in the next section. In 
principle, if M is large enough, the ensemble perturbations obtained by projection cannot be more reliable than 
the original reference ensemble. However, we will show that depending on the modes and subspaces selected as 
a basis, these ensembles can achieve similar performance to the full ‘‘perfect’’ ensemble.

To determine whether the ensemble forecasts generated from the projected initial conditions are reliable, the 
mean square error (MSE) of the ensemble mean and the variance of the ensemble (the square of the ensemble 
spread) are computed at each lead time τ of the ensemble forecasts as:

MSE(𝜏𝜏) =
1

𝑁𝑁

𝑁𝑁∑

𝑛𝑛=1

‖𝒙𝒙𝑛𝑛(𝜏𝜏) − 𝒚̄𝒚
𝑛𝑛
(𝜏𝜏)‖2� (4)

Spread
2
(𝜏𝜏) =

1

𝑁𝑁

𝑁𝑁∑

𝑛𝑛=1

1

𝑀𝑀 − 1

𝑀𝑀∑

𝑚𝑚=1

‖𝒚𝒚
𝑚𝑚𝑚𝑚𝑚

(𝜏𝜏) − 𝒚̄𝒚
𝑛𝑛
(𝜏𝜏)‖2� (5)

where

𝒚̄𝒚
𝑛𝑛
(𝜏𝜏) =

1

𝑀𝑀

𝑀𝑀∑

𝑚𝑚=1

𝒚𝒚
𝑚𝑚𝑚𝑚𝑚

(𝜏𝜏)� (6)

is the ensemble mean over the members ym,n(τ) of the nth ensemble forecast and xn(τ) is the corresponding refer-
ence solution. Finally, ‖ ⋅ ‖ 2 is the L 2-norm. If the Spread 2 and the MSE are close to one another, indicating that 
the estimated error is close to the true error, then the ensemble forecast is considered reliable (Leutbecher & 
Palmer, 2008). The results based on these measures are presented in the Supporting Information.

An alternative measure of reliability of the ensemble forecasts can also be assessed by considering the proper 
ignorance (or logarithmic) score (Roulston & Smith, 2002):

 [𝜌𝜌ens
𝜏𝜏 ] = −ln 𝜌𝜌ens

𝜏𝜏

(
𝒙𝒙𝑛𝑛(𝜏𝜏)|𝒙𝒙ctrl

𝑛𝑛 (0)
)
.� (7)

Applying the ignorance score to a Gaussian, one obtains the related proper two-moment skill score derived by 
Dawid and Sebastiani (1999). As such, and regardless of whether the distributions being considered is Gaussian 
or not (Leutbecher, 2019), the Dawid-Sebastiani Score (DSS) provides an evaluation of the quality of the first 
and second moments of the forecast distribution estimated by the ensemble, with respect to the true moments. 
The bias-free univariate DSS for the nth ensemble forecast and the ith variable of the system can be written as 
(Siegert et al., 2019):

DSS𝑛𝑛𝑛𝑛𝑛(𝜏𝜏) =
1

2
log(2𝜋𝜋) +

1

2
log 𝜎𝜎

2
𝑛𝑛𝑛𝑛𝑛
(𝜏𝜏)

+
1

2

𝑀𝑀 − 3

𝑀𝑀 − 1
(𝑦̄𝑦𝑛𝑛𝑛𝑛𝑛(𝜏𝜏) − 𝑥𝑥𝑛𝑛𝑛𝑛𝑛(𝜏𝜏))

2
∕𝜎𝜎2

𝑛𝑛𝑛𝑛𝑛
(𝜏𝜏),

� (8)

where 𝐴𝐴 𝐴𝐴
2

𝑛𝑛𝑛𝑛𝑛
 is an estimator of the ith variable ensemble variance:

𝜎𝜎
2
𝑛𝑛𝑛𝑛𝑛
(𝜏𝜏) =

1

𝑀𝑀 − 1

𝑀𝑀∑

𝑚𝑚=1

|𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜏𝜏) − 𝑦̄𝑦𝑛𝑛𝑛𝑛𝑛(𝜏𝜏)|2.� (9)

This score can then be averaged over the N realizations:

DSS𝑖𝑖(𝜏𝜏) =
1

𝑁𝑁

𝑁𝑁∑

𝑛𝑛=1

DSS𝑛𝑛𝑛𝑛𝑛(𝜏𝜏).� (10)

The lower the DSS score, the more reliable the ensemble forecasts are for this particular variable. In particu-
lar, the DSS score has been used to characterize the ensembles reliability in the study done by Vannitsem and 
Duan (2020).
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4.  Initialization Methods for Ensemble Forecasts
We now discuss the different bases onto which the set of ensemble perturbations will be projected. Assume that 
a basis comprises k vectors of dimension d arranged as columns of the matrix 𝐴𝐴 𝖡𝖡 ∈ ℂ

𝑑𝑑×𝑘𝑘 . We can construct the 
projection operator onto this basis as,

Π = 𝖡𝖡(𝖡𝖡∗
𝖡𝖡)

−1
𝖡𝖡
∗� (11)

where * denotes the conjugate transpose (Meyer, 2000). If 𝐴𝐴 𝖡𝖡 is unitary, this reduces to 𝐴𝐴 Π = 𝖡𝖡𝖡𝖡
∗ . Assuming that 

𝐴𝐴 Π ∈ ℝ
𝑑𝑑×𝑑𝑑 , if one considers the ensemble of M − 1 perturbations 𝐴𝐴 𝜹𝜹𝜹𝜹

𝑚𝑚

0
 of the control initial conditions, then the 

projection of the perturbations onto the subspace spanned by 𝐴𝐴 𝖡𝖡 is given by:

𝜹𝜹𝜹𝜹
′𝑚𝑚

0
= Π 𝜹𝜹𝜹𝜹

𝑚𝑚

0
.� (12)

The resulting perturbations are used to initialize ensemble forecasts with the initial conditions:

�′
�,�(0) = �ctrl

� (0) + ��′�
0 , � = 1,… ,�� (13)

in the experiments discussed in Section 6.

Let us now detail the various basis vectors considered and the subspaces that they span, namely the EOFs, the 
backward (BLVs), covariant (CLVs) Lyapunov vectors and their adjoints, and the Koopman and Perron-Frobe-
nius eigenfunctions determined using DMD. Unlike the other basis vectors used, the Lyapunov vectors are 
time-dependent, defined locally at each point of the reference trajectory, and are related to the stability of the 
local linearized dynamics.

4.1.  Empirical Orthogonal Functions

The EOFs of the data set are obtained using a Principal Component Analysis (PCA), which decomposes the 
data into a set of orthogonal basis functions and time-dependent coefficients. These orthogonal patterns can be 
obtained directly by singular value decomposition (SVD) of the data matrix, or by computing the eigenvectors of 
the data covariance matrix (Wilks, 2011).

Assuming that the data set is represented by the matrix 𝐴𝐴 𝖷𝖷 = [𝒙𝒙0 …𝒙𝒙𝐾𝐾−1] , with 𝐴𝐴 𝖷𝖷 ∈ ℝ
𝑑𝑑×𝐾𝐾 . The columns of 𝐴𝐴 𝖷𝖷 are 

the system states 𝐴𝐴 𝒙𝒙𝑘𝑘 = 𝚽𝚽
𝑡𝑡𝑘𝑘 (𝒙𝒙0) at times 𝐴𝐴 𝐴𝐴𝑘𝑘 = 𝑘𝑘Δ𝑡𝑡 where 𝐴𝐴 𝚽𝚽

𝑡𝑡 is the flow of system Equation (1): 𝐴𝐴 𝒙𝒙(𝑡𝑡) = 𝚽𝚽
𝑡𝑡
(𝒙𝒙(0)) , 

The EOFs are the column vectors of 𝐴𝐴 𝖴𝖴 as determined by the PCA:

𝖳𝖳 = 𝖴𝖴
∗
𝖷̄𝖷� (14)

where 𝐴𝐴 𝖷̄𝖷 = 𝖷𝖷 − ⟨𝖷𝖷⟩𝑘𝑘 is the matrix of system states with zero empirical time mean, and 𝐴𝐴 𝖴𝖴 is a matrix whose 
columns are the orthogonal eigenvectors of the matrix 𝐴𝐴 𝖷̄𝖷𝖷̄𝖷

∗ which is proportional to the covariance matrix of 
the system, and 𝐴𝐴 𝖳𝖳 is the time-series of the coefficients of the decomposition. The eigenvalues of the matrix 𝐴𝐴 𝖷̄𝖷𝖷̄𝖷

∗ 
are related to the variance of the data projected onto the corresponding mode. The amplitude of the eigenvalues 
comparatively to the others then provides the ‘‘fraction of explained variance’’ by a given EOF.

The EOFs can alternatively be obtained by SVD of 𝐴𝐴 𝖷̄𝖷 :

𝖷̄𝖷 = 𝖴𝖴Σ𝖵𝖵∗� (15)

where 𝐴𝐴 𝖴𝖴 and 𝐴𝐴 𝖵𝖵 are two unitary square matrices and 𝐴𝐴 Σ is diagonal, containing the singular values of 𝐴𝐴 𝖷̄𝖷 . The matrix 
𝐴𝐴 𝖴𝖴 contains the EOFs of 𝐴𝐴 𝖷̄𝖷 since 𝐴𝐴 𝖷̄𝖷𝖷̄𝖷

∗ = 𝖴𝖴ΣΣ∗
𝖴𝖴

∗ , and the PCA time-series of coefficients can be represented as            
𝐴𝐴 𝖳𝖳 = 𝖴𝖴

∗
𝖷̄𝖷 = Σ𝖵𝖵∗ .

4.2.  The Lyapunov Vectors

We next consider the BLVs, the covariant Lyapunov vectors (CLVs), and the adjoint CLVs as basis vectors 𝐴𝐴 𝖡𝖡 
in Equation (11). The Lyapunov vectors are locally defined in the tangent space of the trajectory of the model, 
and give information about the stability therein. For instance, Osedelets has shown that the tangent space can 
be decomposed into a set of nested subspaces 𝐴𝐴 𝐴𝐴

−

𝑘𝑘
 that are invariant under the tangent linear model dynamics 
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(Oseledets, 1968, 2008). Arbitrary k-volumes defined in the tangent space converge to the subspace 𝐴𝐴 𝐴𝐴
−

𝑘𝑘
 under 

the action of the tangent flow. These subspaces are spanned by the BLVs 𝐴𝐴 𝝋𝝋
−
𝑖𝑖
 : 𝐴𝐴 𝐴𝐴

−

𝑘𝑘
= Span

{
𝝋𝝋

−
𝑖𝑖
|𝑖𝑖 = 1,… , 𝑘𝑘

}
 . 

The BLVs are thus related to the asymptotic properties of volumes in the tangent space, that is, to how volumes 
contract or expand in the tangent space. The Lyapunov exponents characterize the time-average expansion and 
contraction rates of these volumes over the entire attractor.

The CLVs φi are defined as stability directions in the tangent space that are covariant under the application of 
the tangent linear model dynamics. The tangent linear flow maps a CLV at one time to the same CLV at a later 
time, but multiplied by a stretching factor defined over the same timescale as the tangent linear mapping, which 
indicates the local stability of this CLV (Kuptsov & Parlitz, 2012). Finally, the adjoint CLVs 𝐴𝐴 𝝋̃𝝋

𝑖𝑖
 are vectors that 

are covariant as well, but with respect to the flow of the adjoint model. See Appendix A for more details.

To determine the sets 𝐴𝐴 𝖡𝖡 of basis vectors that we will consider in the experiments, it is useful to consider the Lyapu-
nov spectra σi (depicted in Figure 2). These exponents have been estimated by averaging the local stretching rate 
χi (see Equation (A12) in Appendix A) along the trajectories depicted in Figure 1 with a bootstrap algorithm 
(Efron & Tibshirani, 1993) to increase its statistical significance. The standard deviation of the time series used 
to compute the averaged Lyapunov exponent is also shown.

A continuous-in-time chaotic dynamical system generally has positive (unstable) and negative (stable) exponents, 
along with a single zero-valued exponent that corresponds to the direction of flow of the system trajectory. For 
the coupled atmosphere-ocean system, however, because the magnitude of many of the near-zero exponents is 
smaller than the standard deviation of the time series itself, it is difficult to precisely identify the zero-valued 
Lyapunov exponent that separates the stable and unstable directions in the spectra (Vannitsem & Lucarini, 2016; 
Penny et al., 2019). This is true for both model configurations (weak and strong LFV).

The BLVs have been computed with the Benettin algorithm (Benettin et al., 1980), while the CLVs and their 
adjoint have been computed by the method seeking to find the intersection of the subspaces spanned by the BLVs 
and the Forward Lyapunov Vectors (FLVs) (Legras & Vautard, 1996), see Appendix A. To this end, the FLVs 
have also been computed using the Benettin algorithm.

4.3.  The Koopman (KM) and Perron-Frobenius (PF) Eigenfunctions

4.3.1.  The Koopman and Perron-Frobenius Operators

The Koopman operator provides a means of representing a finite-dimensional nonlinear system as an infinite-di-
mensional linear system by ‘‘lifting’’ the underlying state space to a set of observables. The Koopman operator 

𝐴𝐴 
𝜏𝜏 acts upon an observable g(x) of the system state x as,


𝜏𝜏
𝑔𝑔(𝒙𝒙) = 𝑔𝑔 (𝚽𝚽

𝜏𝜏
(𝒙𝒙))� (16)

where the mapping Φ τ describes the flow of system Equation (1) such that x(t + τ) = Φ τ(x(t)).

Figure 2.  Absolute value of the Lyapunov exponents (the LEs are expressed in day −1), along with the one standard-deviation 
uncertainty, for: (a) the case with weak low-frequency variability and (b) the case with strong low-frequency variability. The 
approximate separation between the positive (unstable) and negative (stable) exponents is depicted by a vertical dashed red 
line. The UNN subspace is the unstable-near-neutral subspace, see Section 5 for more details.
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While the Koopman operator governs the time evolution of observables of the system, its adjoint, the Perron-Frobe-
nius (or transfer) operator 𝐴𝐴 

𝜏𝜏 , governs the time evolution of the probability density ρt. The probability density 
given at any lead time τ is thus,

𝜌𝜌𝑡𝑡+𝜏𝜏 = 
𝜏𝜏
𝜌𝜌𝑡𝑡.� (17)

The Koopman and Perron-Frobenius operators can both be used to determine the evolution of the expected value 
of an observable. Indeed, if we consider the expected value of an observable g, for a given distribution ρt at time 
t, to be defined as,

⟨𝑔𝑔⟩𝑡𝑡 =
∫

𝑔𝑔(𝒙𝒙) 𝜌𝜌𝑡𝑡(𝒙𝒙) d𝒙𝒙� (18)

and the inner product defined as,

⟨𝑎𝑎𝑎 𝑎𝑎⟩ =
∫

𝑎𝑎
∗(𝒙𝒙) 𝑏𝑏(𝒙𝒙) d𝒙𝒙,� (19)

then for a real-valued scalar observable g, we have 𝐴𝐴 ⟨𝑔𝑔⟩𝑡𝑡 = ⟨𝑔𝑔𝑔 𝑔𝑔𝑡𝑡⟩ = ⟨𝑔𝑔𝑔 𝑡𝑡
𝜌𝜌0⟩ = ⟨𝑡𝑡

𝑔𝑔𝑔 𝑔𝑔0⟩ . Note that we have used 
the fact that the observable is real, that is, g(x)* = g(x), and that 𝐴𝐴 

𝑡𝑡 is the adjoint of 𝐴𝐴 
𝑡𝑡 .

Special care must be taken when the system is chaotic, as the spectra of the Koopman and Perron-Frobenius 
operators may include degenerate eigenvalues (Jordan blocks) and continuous parts (Arbabi & Mezić,  2017; 
Gaspard et al., 1995; Mezić, 2020) (see also our remarks about this in the conclusions Section 7). However, for 
the remainder, for the sake of simplicity, we shall assume that these spectra are discrete. Importantly, a vector-val-
ued observable g can then be decomposed using the eigenfunctions ϕi of the Koopman operator

𝒈𝒈(𝒙𝒙) =

∞∑

𝑖𝑖=1

𝒄𝒄
KM

𝑖𝑖
𝜙𝜙𝑖𝑖(𝒙𝒙)� (20)

And the application of the Koopman operator can thus be decomposed into a set of eigenvalues λi, eigenfunctions 
ϕi, and modes (coefficients) 𝐴𝐴 𝒄𝒄

KM

𝑖𝑖
 as,


𝜏𝜏
𝒈𝒈(𝒙𝒙) =

∞∑

𝑖𝑖=1

𝒄𝒄
KM

𝑖𝑖
𝜆𝜆𝑖𝑖(𝜏𝜏)𝜙𝜙𝑖𝑖(𝒙𝒙).� (21)

This indicates that the propagation of an observable due to the Koopman operator can be represented as a super-
position of oscillating stretching/contracting factors applied to the Koopman eigenfunctions. A challenge in trans-
lating the use of this Koopman operator to practical applications is the determination of an appropriate truncation 
of this infinite series.

Similarly for the Perron-Frobenius operator, a probability density ρ defined over the phase space can be expanded 
in terms of its eigenfunctions ψi:

𝜌𝜌(𝒙𝒙) =

∞∑

𝑖𝑖=1

𝑐𝑐
PF

𝑖𝑖
𝜓𝜓𝑖𝑖(𝒙𝒙)� (22)

and its time evolution is then also decomposable in term of a set of eigenvalues λi, eigenfunctions ψi, and coef-
ficients 𝐴𝐴 𝐴𝐴

PF

𝑖𝑖
 :


𝜏𝜏
𝜌𝜌(𝒙𝒙) =

∞∑

𝑖𝑖=1

𝑐𝑐
PF

𝑖𝑖
𝜆𝜆
∗
𝑖𝑖
(𝜏𝜏)𝜓𝜓𝑖𝑖(𝒙𝒙).� (23)

The eigenfunctions of the Koopman and Perron-Frobenius operators are biorthonormal to one another  
〈ϕi, ψj〉 = δi,j, and therefore, the Koopman modes of a given observable g can be determined using the Perron-Frobe-
nius eigenfunctions: 𝐴𝐴 𝒄𝒄

KM

𝑖𝑖
= ⟨𝜓𝜓𝑖𝑖, 𝒈𝒈⟩ , where the inner product is applied component-wise.

The time evolution of the expected value of the observable can then be given more simply as
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⟨�⟩� = ⟨�, ��0⟩

=
∞
∑

�=1
⟨�, �∗

� (�)�� �PF
� ⟩

=
∞
∑

�=1
�∗
� (�) �

PF
�

(

�KM
�

)∗

� (24)

from now on, to present numerical methods to approximate the Koopman and Perron-Frobenius eigenfunctions 
decompositions, we will consider a set of realizations gt = g (xt) of a vector-valued observable g of dimension P 
evaluated over the system states xt that are assumed to satisfy,

𝒈𝒈
𝑡𝑡+𝜏𝜏

= 
𝜏𝜏
𝒈𝒈
𝑡𝑡
.� (25)

If this time evolution is repeated sequentially with a fixed lead time τ = Δt, then it constitutes thus a data set of 
K + 1 input-output pairs (gk, gk+1), k = 0, 1, …, K of the operator:

𝒈𝒈
𝑘𝑘+1 = 𝕂𝕂𝒈𝒈

𝑘𝑘
, 𝕂𝕂 ≡ 

Δ𝑡𝑡
.� (26)

For example, if the observables gk are the states of the model given by Equation (1) depicted on Figure 1, then 
Δt = 10 MTU, corresponding roughly to one day.

4.3.2.  The Dynamic Mode Decomposition (DMD) Algorithm

The DMD algorithm is a data-driven approach that provides a linear decomposition of a given signal of input-out-
put pairs into a set of spatial patterns called dynamic modes that are modulated by a damping or growing oscil-
lating factor. The approach was first developed in the climate community under the name LIM (Penland, 1989; 
Penland & Sardeshmukh, 1995), with its corresponding linear normal modes, as an extension of the Principle 
Oscillation Patterns (POP) technique of Hasselmann (1988) and Von Storch et al. (1988). It was later rediscovered 
in the fluid mechanics community by Schmid (2010) as an extension of the proper orthogonal decomposition 
(Berkooz et al., 1993). In the framework of dynamical systems like Equation (1), DMD has been identified as 
an algorithm to approximate the Koopman operator 𝐴𝐴 

𝜏𝜏 (Rowley et  al.,  2009; Williams et  al.,  2015) and the 
Perron-Frobenius operator 𝐴𝐴 

𝜏𝜏 (Klus et al., 2016).

The DMD algorithm identifies two sets of vectors, the adjoint DMD modes and the exact DMD modes (Tu 
et al., 2014). The former are approximately related to the eigenfunctions of the Koopman operator, while the latter 
are related to the Koopman modes.

For this purpose, the input-output pairs (gk, gk+1) are stacked as the columns of two matrices 𝐴𝐴 𝖷𝖷 =
[
𝒈𝒈0 … 𝒈𝒈

𝐾𝐾−1

]
 

and 𝐴𝐴 𝖸𝖸 =
[
𝒈𝒈
1
… 𝒈𝒈

𝐾𝐾

]
 . When the time steps are evenly partitioned, this is simply a repeated representation of the 

data set, offset by one timestep. It is assumed that a matrix 𝐴𝐴 𝖬𝖬
DMD exists that approximates the operator 𝐴𝐴 

𝜏𝜏 so that,

𝖸𝖸 = 𝖬𝖬
DMD

𝖷𝖷,� (27)

and thus,

𝖬𝖬
DMD

= 𝖸𝖸𝖸𝖸
+
,� (28)

where 𝐴𝐴 𝖷𝖷
+ is the pseudoinverse of 𝐴𝐴 𝖷𝖷 . Alternatively, the matrix 𝐴𝐴 𝖬𝖬

DMD is sometimes written

𝖬𝖬
DMD

= 𝖠𝖠𝖠𝖠
+
,� (29)

where 𝐴𝐴 𝖠𝖠 = 𝖸𝖸𝖸𝖸
∗ and 𝐴𝐴 𝖦𝖦 = 𝖷𝖷𝖷𝖷

∗ (Klus et al., 2018). The matrix 𝐴𝐴 𝖬𝖬
DMD approximates the operator 𝐴𝐴 𝕂𝕂 in the least-

squares sense. The eigenvalues and the right eigenvectors of 𝐴𝐴 𝖬𝖬
DMD are called the DMD eigenvalues and DMD 

modes of the data. In practice, the eigendecomposition of 𝐴𝐴 𝖬𝖬
DMD can be performed with the SVD (Tu et al., 2014), 

or using the Arnoldi algorithm (Rowley et al., 2009). With the SVD, a truncated form can be defined to permit 
a reduced dimension form of 𝐴𝐴 𝖬𝖬

DMD . Indeed, by computing the SVD of the matrix 𝐴𝐴 𝖷𝖷 as 𝐴𝐴 𝖷𝖷 = 𝖴𝖴Σ𝖵𝖵∗ , Equation (28) 
can be transformed as

𝖬𝖬
DMD = 𝖸𝖸𝖸𝖸Σ−1

𝖴𝖴
−1
,� (30)

where we have used the unitary property of 𝐴𝐴 𝖵𝖵 , and the reduced form is then given by
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𝖬̃𝖬
DMD = 𝖴𝖴

∗
𝖬𝖬

DMD
𝖴𝖴 = 𝖴𝖴

∗
𝖸𝖸𝖸𝖸Σ−1

.� (31)

Importantly, the nonzero eigenvalues 𝐴𝐴 𝐴𝐴
DMD

𝑖𝑖
 of 𝐴𝐴 𝖬𝖬

DMD are the same as those of 𝐴𝐴 𝖬̃𝖬
DMD . The right eigenvectors 𝐴𝐴 𝒗̃𝒗𝑖𝑖 of 

𝐴𝐴 𝖬̃𝖬
DMD can be used to recover the corresponding right eigenvectors 𝐴𝐴 𝒗𝒗𝑖𝑖 =

1

𝜆𝜆
DMD

𝑖𝑖

𝖸𝖸𝖸𝖸Σ−1
𝒗𝒗𝑖𝑖 of 𝐴𝐴 𝖬𝖬

DMD . The left eigenvec-

tors 𝐴𝐴 𝒘̃𝒘𝑖𝑖 of 𝐴𝐴 𝖬̃𝖬
DMD can be used to recover the left eigenvectors 𝐴𝐴 𝒘𝒘𝑖𝑖 = 𝖴𝖴 𝒘̃𝒘𝒊𝒊 of 𝐴𝐴 𝖬𝖬

DMD , satisfying the biorthonormality 
condition,

𝒘𝒘
∗
𝑖𝑖
𝒗𝒗𝑗𝑗 = 𝒘̃𝒘

∗
𝑖𝑖
𝖴𝖴

∗ 1

𝜆𝜆
DMD

𝑗𝑗

𝖸𝖸𝖸𝖸Σ−1
𝒗𝒗𝑗𝑗 = 𝒘̃𝒘

∗
𝑖𝑖

1

𝜆𝜆
DMD

𝑗𝑗

𝖬̃𝖬
DMD

𝒗𝒗𝑗𝑗 = 𝒘̃𝒘
∗
𝑖𝑖
𝒗𝒗𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑖� (32)

where we have assumed that the left and right eigenvectors of 𝐴𝐴 𝖬𝖬
DMD are scaled in order to form biorthonormal 

bases. The left eigenvectors wi are called the adjoint DMD modes, while the right eigenvectors vi are called the 
exact DMD modes (Tu et al., 2014).

The left eigenvectors wi of 𝐴𝐴 𝖬𝖬
DMD can be used to produce approximations of the Koopman (KM) eigenfunctions. 

As shown by (Williams et al., 2015), if the eigenfunctions of the Koopman operator are approximated as

𝜙𝜙𝑖𝑖(𝒙𝒙) ≈ 𝒘𝒘
∗
𝑖𝑖
𝒈𝒈(𝒙𝒙).� (33)

Then any observable h can be decomposed on the eigenfunctions provided by the observables g that have been 
used to compute 𝐴𝐴 𝖬𝖬

DMD and its eigenvectors, according to

𝒉𝒉(𝒙𝒙) =

𝑃𝑃∑

𝑖𝑖=1

𝒄𝒄
DMD

𝑖𝑖
𝒘𝒘

∗
𝑖𝑖
𝒈𝒈(𝒙𝒙)� (34)

and applying the operator 𝐴𝐴 𝕂𝕂 , we recover a time-discretized vector-valued approximation of Equation (21):

��(�) =
�
∑

�=1
�DMD
� �∗

� ��(�)

≈
�
∑

�=1
�DMD
� �∗

� �
DMD �(�)

=
�
∑

�=1
�DMD
� �DMD

� �∗
� �(�)

� (35)

in particular, if the observable g is the identity (g(x) = x), then the decomposition Equation (34) is analogous to 
a one-term Taylor expansion of h (Williams et al., 2015). Note that Williams et al. (2015) call the collection of 
observables contained in the vector g a dictionary.

In the remainder, references to the KM eigenfunctions are made under the assumption that they are approximated 
using this procedure, and due to Equation (33), it may refer equivalently to the eigenfunctions ϕi or the left eigen-
vectors wi.

Finally, the coefficients 𝐴𝐴 𝒄𝒄
DMD

𝑖𝑖
 are provided by the right eigenvectors vi, that is, the DMD modes approximating the 

Koopman modes 𝐴𝐴 𝒄𝒄
KM

𝑖𝑖
 (see for instance a trivial example in Section 4.3.4 below where 𝐴𝐴 𝒄𝒄

DMD

𝑖𝑖
= 𝒗𝒗𝑖𝑖 ).

A pseudo-code description of the code needed to compute the KM eigenfunctions and DMD modes is provided 
as Algorithm 2 in Appendix B.

4.3.3.  The Perron-Frobenius Mode Decomposition

Since the Perron-Frobenius operator is the adjoint of the Koopman operator, it is also possible to obtain a finite 
dimensional representation of the former with this relation, as shown by Klus et  al.  (2016). Because we are 
working in the space of observables, we can access the eigenfunctions of the Perron-Frobenius operator using the 
adjoint property with the Koopman operator (e.g., using the inner product Equation (19)). The finite dimensional 
representation of the Perron-Frobenius operator is given by

𝖬𝖬
PFMD

= 𝖠𝖠
𝖳𝖳
(
𝖦𝖦

+
)𝖳𝖳
,� (36)
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where again 𝐴𝐴 𝖠𝖠 = 𝖸𝖸𝖸𝖸
∗ and 𝐴𝐴 𝖦𝖦 = 𝖷𝖷𝖷𝖷

∗ . In particular, note that the matrix representation 𝐴𝐴 𝖬𝖬
PFMD of the Perron-Frobe-

nius operator is not the matrix transpose of the matrix representation 𝐴𝐴 𝖬𝖬
DMD of the Koopman operator, because 

both operators are adjoint to each other with respect to the inner product Equation (19). The matrix transpose 
provides the adjoint with respect to the canonical inner product on 𝐴𝐴 ℝ

𝑑𝑑 .

Similarly as for the DMD decomposition and the Koopman operator, a distribution ρ(x) can be decomposed on 
the left eigenvectors ωi of 𝐴𝐴 𝖬𝖬

PFMD as

𝜌𝜌(𝒙𝒙) =

𝑃𝑃∑

𝑖𝑖=1

𝑐𝑐
PFMD

𝑖𝑖
𝝎𝝎

∗
𝑖𝑖
𝒈𝒈(𝒙𝒙)� (37)

where the eigenfunctions ψi of the Perron-Frobenius operator are thus approximated as,

𝜓𝜓𝑖𝑖(𝒙𝒙) ≈ 𝝎𝝎
∗
𝑖𝑖
𝒈𝒈(𝒙𝒙).� (38)

The decomposition Equation (37) of the densities is thus a time-discretized approximation of Equation (22), and 
we call it a Perron-Frobenius mode decomposition (PFMD). In the following, references to the PF eigenfunctions 
are made under the assumption that they are approximated using this procedure, and may refer equivalently to the 
eigenfunctions ψi or the left eigenvectors ωi.

Finally, we note that the Perron-Frobenius operator being considered here is defined with respect to the invari-
ant distribution of the system (Klus et al., 2018; Tantet, Lucarini, & Dijkstra, 2018), since the matrix 𝐴𝐴 𝖬𝖬

PFMD is 
constructed from a long trajectory of the system dynamics.

A pseudo-code description of the code needed to compute the PF eigenfunctions is provided as Algorithm 3 in 
Appendix B.

4.3.4.  Projections of Ensemble Distributions

From now on, we assume that the observable g used to obtain the representations 𝐴𝐴 𝖬𝖬
DMD and 𝐴𝐴 𝖬𝖬

PFMD is the identity: 
g(x) = x. For instance, for a dynamical system, the datasets 𝐴𝐴 𝖷𝖷 and 𝐴𝐴 𝖸𝖸 considered thus consist of observed states of 
the system. For a given ensemble of initial condition perturbations 𝐴𝐴 𝜹𝜹𝜹𝜹

𝑚𝑚

0
 of the state of system Equation (1), these 

can be projected onto a subset of the KM left eigenvectors wi or onto a subset of the PF left eigenvectors ωi. In the 
first case, it decomposes the perturbations - viewed as local observables - onto selected (approximate) eigenfunc-
tions of the Koopman operator of the system. This subset of eigenfunctions allows one to (approximately) reduce 
the action of the Koopman operator on a given invariant subspace of this operator, which is characterized by the 
left eigenvectors wi and the ‘‘timescales’’ 𝐴𝐴 𝐴𝐴

DMD

𝑖𝑖
 . The propagation of the projected ensemble of initial conditions 

by Equation (1) is then assumed to be equivalent to the action of the Koopman operator 𝐴𝐴 
𝑡𝑡
𝜹𝜹𝜹𝜹

𝑚𝑚

0
 restricted on this 

invariant subspace.

Let's be more precise about these projections: For a given observable h evaluated on a perturbed state x + δx, 
we have:

𝒉𝒉(𝒙𝒙 + 𝜹𝜹𝜹𝜹) ≈ 𝒉𝒉(𝒙𝒙) + ∇𝒙𝒙𝒉𝒉 𝒉𝒉𝒉𝒉� (39)

the second term is a local approximation of the observable h around the unperturbed state x, and whose time 
evolution is well represented by the DMD decomposition. If the observable h is the identity (h(x) = x), we have 
naturally 𝐴𝐴 ∇𝒙𝒙𝒉𝒉 = 𝖨𝖨 where 𝐴𝐴 𝖨𝖨 is the identity matrix, and h(x + δx) = h(x) + h(δx). Therefore, one can decompose the 
perturbation according to Equation (34) to get:

𝒉𝒉(𝜹𝜹𝜹𝜹) = 𝖢𝖢
DMD

𝖶𝖶
∗
𝒈𝒈(𝜹𝜹𝜹𝜹) = 𝖢𝖢

DMD
𝖶𝖶

∗
𝜹𝜹𝜹𝜹� (40)

where 𝐴𝐴 𝖶𝖶 is the column matrix of left eigenvectors wi of 𝐴𝐴 𝖬𝖬
DMD . Since the observable h is now the identity we 

have - due to the biorthonormality relationship Equation (32) - that the matrix 𝐴𝐴 𝖢𝖢
DMD is given by 𝐴𝐴 𝖢𝖢

DMD
= 𝖵𝖵 where 

𝐴𝐴 𝖵𝖵 is the column matrix of right eigenvectors vi of 𝐴𝐴 𝖬𝖬
DMD . According to Equation (33), the decomposition above is 

a decomposition in terms of the (approximated) eigenfunctions 𝐴𝐴 𝐴𝐴𝑖𝑖(𝜹𝜹𝜹𝜹) ≈ (𝖶𝖶∗
𝜹𝜹𝜹𝜹)𝑖𝑖 . Projecting the perturbation δx 

onto a subset of KM eigenfunctions is thus equivalent to making the expansion above according to a partial choice 
𝐴𝐴 𝖶𝖶

′∗
𝜹𝜹𝜹𝜹 of eigenfunctions, where 𝐴𝐴 𝖶𝖶

′ is a column matrix composed of a choice of columns from the matrix 𝐴𝐴 𝖶𝖶 , that 
is, a choice amongst the left eigenvectors of 𝐴𝐴 𝖬𝖬

DMD . The projected perturbation is thus developed as:
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𝜹𝜹𝜹𝜹
′
= 𝖵𝖵

′
𝖶𝖶

′∗
𝜹𝜹𝜹𝜹� (41)

where 𝐴𝐴 𝖵𝖵
′ are the right eigenvectors biorthonormal to the left eigenvectors 𝐴𝐴 𝖶𝖶

′ . Identifying 𝐴𝐴 𝖡𝖡 = 𝖶𝖶
′ in Equation (11) 

for the projector 𝐴𝐴 Π , we get

Π = 𝖶𝖶
′
(
𝖶𝖶

′∗
𝖶𝖶

′
)−1

𝖶𝖶
′∗� (42)

and using the fact that 𝐴𝐴 𝖶𝖶
′∗
𝖵𝖵

′ = 𝖨𝖨 , where 𝐴𝐴 𝖨𝖨 is the identity matrix, we have 𝐴𝐴 𝖵𝖵
′ = 𝖶𝖶

′ (𝖶𝖶′∗
𝖶𝖶

′)
−1 . Therefore, Equa-

tion (41) is exactly the projected perturbation 𝐴𝐴 𝜹𝜹𝜹𝜹
′
= Π 𝜹𝜹𝜹𝜹 obtained with the projector Equation (11).

Similarly, in the case where the perturbations are projected onto a selected subset of the (approximated) eigen-
functions 𝐴𝐴 𝐴𝐴𝑖𝑖(𝜹𝜹𝜹𝜹) ≈ 𝝎𝝎

∗
𝑖𝑖
𝒈𝒈(𝜹𝜹𝜹𝜹) of the Perron-Frobenius operator of the system, because this subset forms an invar-

iant subspace of the Perron-Frobenius operator, one can assume that the propagation of the projected ensemble 
of initial conditions with system Equation (1) is equivalent to the action of the Perron-Frobenius operator on the 
projection of the distribution ρ ens of the ensemble.

4.3.5.  The Koopman and Perron-Frobenius Eigenfunctions of the Coupled Ocean-Atmosphere Model

To study the dynamic modes in the coupled ocean-atmosphere system, the KM eigenfunctions have been esti-
mated using the data of the reference trajectories depicted in Figure 1 sampled every Δt = 10 MTU (roughly every 
day), using the SVD method described in Section 4.3.2. The results are shown in the panels (a) and (b) of Figure 3 
for the weak LFV case, and in the panels (c) and (d) for the strong LFV case. In both cases, we note that there are 
16 eigenvalues in the vicinity of the point 1 + 0 i in the complex plane. These eigenvalues correspond to very slow 
decaying and oscillating KM eigenfunctions, describing the LFV signal in the system. The remaining eigenvalues 
are related to faster decaying oscillations. The amplitude of each component of the KM eigenfunctions is shown 
in Figure 4. Each KM eigenfunction is a complex-valued vector, and is paired with another KM eigenfunction that 
is its complex conjugate (except for the presence of real eigenvalues), each corresponding to complex conjugate 
eigenvalues. For this reason, Figure 4 shows both the real and imaginary parts of the KM eigenfunctions every 
two columns. A clear distinction can be made between the slow decaying KM eigenfunctions and the others. 
Indeed, the slow-decaying KM eigenfunctions (1–16) involve both the ocean streamfunction variables (variables 
21–28) and temperature variables (variables 29–36), with a predominance of the streamfunction variables. The 
fast-decaying KM eigenfunctions (17–36) involve the ocean streamfunction variables with a coupling to the 
atmospheric variables (variables 1–20), and a far weaker coupling to the ocean temperature variables.

The PF eigenfunctions have been obtained by directly computing the eigenvectors of the finite dimensional 
representation of the Perron-Frobenius operator. They possess the same spectrum of eigenvalues as the KM 
eigenfunctions (see the Supporting Information S1), and while being different, they share the same global slow-
fast organization as the KM eigenfunctions (see Figure 4).

5.  Selected Bases for Experiments
Finally, we choose a specific set of bases using the methods described above. Each of the methods determines 
a set of basis vectors that define the entire state space. We will split each of these into subspaces onto which to 
project the M ‘‘perfect’’ ensemble perturbations. The projected perturbations hence obtained will be used to 
obtain the ensemble initial conditions of each experiment in the next section, according to Equation (13).

In Figure 5, we show the estimated percent explained variance for the EOFs of the ocean-atmosphere coupled 
quasi-geostrophic system. The EOF modes are shown in Figure 4, with each mode independently normalized to 
unit magnitude. The leading EOFs explaining most of the variance are related to the ocean temperature and the 
atmospheric streamfunction variables. We note that the last eight EOFs, while explaining very little of the  total 
variance, have a qualitatively different pattern than the other modes, with a dominant component along the 
ocean streamfunction. Therefore, the different bases 𝐴𝐴 𝖡𝖡 of EOFs that we have selected for the experiments are the 
following:

1.	 �The first 12 EOFs, 𝐴𝐴 𝖴𝖴1∶12 , which account for the most significant part of the variability
2.	 �The last 8 EOFs, 𝐴𝐴 𝖴𝖴29∶36 , which have a qualitatively different pattern from the others
3.	 �The remaining 16 EOFs, 𝐴𝐴 𝖴𝖴13∶28 , which display a more uniform distribution across the different model fields
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where the ranges of integers are indicated as i : j and consist of all the integers included in {i, …, j}.

We shall somewhat arbitrarily divide the CLVs, adjoint CLVs, BLVs into 2 parts:

1.	 �the first k Lyapunov vectors, φ1:k, 𝐴𝐴 𝝋̃𝝋1∶𝑘𝑘 and 𝐴𝐴 𝝋𝝋
−

1∶𝑘𝑘
 , of the spectra, and

2.	 �the remaining d − k Lyapunov vectors, φ(k+1):d, 𝐴𝐴 𝝋̃𝝋(𝑘𝑘+1)∶𝑑𝑑 and 𝐴𝐴 𝝋𝝋
−

(𝑘𝑘+1)∶𝑑𝑑

The value of k is chosen so that the subspaces 𝐴𝐴 𝐴𝐴
−

𝑘𝑘
 hence considered includes the unstable directions σi > 10 −2 and 

the near-neutral directions σi ∈[−10 −2, 10 −2], see Figure 2. We shall refer to this as the Unstable Near-Neutral 
(UNN) subspace. Its complement 𝐴𝐴 𝐴𝐴

−

𝑘𝑘+1
 includes the stable directions σi < − 10 −2 and will be referred to as the 

Stable subspace. The subspace 𝐴𝐴 𝐴𝐴
−

𝑘𝑘
 has been shown to be important for data-assimilation; its dimension k is related 

to the minimum number of ensemble members needed to ensure that, when applied under ideal conditions, the 

Figure 3.  Koopman eigenvalues estimated using Dynamic Mode Decomposition (DMD). Right panels: For the case with weak low-frequency variability, (a) real and 
imaginary parts of the eigenvalues as a function of the corresponding DMD rank, and (b) eigenvalues as a scatter plot in the complex plane. Left panels: For the case 
with strong low-frequency variability, (c) real and imaginary parts of the eigenvalues as a function of the corresponding DMD rank, and (d) eigenvalues as a scatter plot 
in the complex plane.
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deterministic Ensemble Kalman Filter is non-divergent (Bocquet & Carrassi, 2017; Bocquet et al., 2017; Carrassi 
et al., 2021; Penny, 2017; Tondeur et al., 2020). This separation of the tangent space into two complementary 
subspaces is indicated in Figure 2 as a vertical dashed green line at the value k = 20 for the weak LFV case and 
k = 16 for the strong LFV case.

We shall call as slow the first 16 KM eigenfunctions and PF eigenfunctions, while the remaining 20 are called the 
fast KM and PF eigenfunctions. We shall use both the slow and the fast KM/PF eigenfunctions as separate bases 

𝐴𝐴 𝖡𝖡 in Equation (11) onto which to project the ensemble perturbations. These eigenfunctions are complex valued, 
but because they are complex conjugate two-by-two, the resulting projector Equation (11) is a real matrix.

Figure 4.  Comparison of the averaged energy of the Lyapunov vectors components with the Empirical Orthogonal Function, Koopman, and Perron-Frobenius 
eigenfunctions patterns for: (a) the case with weak low-frequency variability, (b) the case with strong low-frequency variability.

Figure 5.  Percentage of explained variance of the Empirical Orthogonal Functions modes, for: (a) the case with weak 
low-frequency variability and (b) the case with strong low-frequency variability.
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Thus, the approximated KM and PF eigenfunctions, derived from DMD, that 
are used as a basis for the projection of initial ensemble perturbations are.

1.	 �The ‘‘slow’’ KM and PF left eigenvectors wi and ωi, for i ∈ {1, …, 16}, 
corresponding to eigenvalues near 1 + 0 i in the complex plane

2.	 �The ‘‘fast’’ KM and PF left eigenvectors wj and ωj, for j ∈ {17, …, 36}, 
corresponding to complex-valued eigenvalues with magnitude notably 
smaller than one

We note that the dimension spanned by these KM and PF left eigenvectors 
is close to the number of unstable and near-neutral directions found in the 
system (see next section). It could also be related to the existence of an invar-
iant manifold which forms what was called the “backbone” of the attractor 
(Demaeyer & Vannitsem, 2017; Vannitsem et al., 2015). As shown in these 
references, this invariant manifold strongly shapes the LFV of the coupled 
ocean-atmosphere system.

The various experiments and bases onto which the ensemble perturbations 
are projected are summarized in Table  1 for the weak LFV case, and in 
Table 2 for the strong LFV case.

6.  Results on Ensemble Forecast Initialization
As stated in Section 3, a set of N states xn along the reference trajectories are 
used to generate N separate ensemble forecasts with the initial conditions 
Equation (3) of the perfect ensemble and the initial conditions Equation (13) 
of the projected ensembles obtained with the various bases described in 
Section 5. Each experiment uses ensembles composed of M = 20 members 
(including the control run). This ensemble size is assumed sufficient based 
on the dimension of the UNN subspace, as shown by Carrassi et al. (2021) 
and Tondeur et  al.  (2020). A pseudo-code description of the experiment 
design is provided as Algorithm 1 in Appendix B.

We compute N = 1980 sets of ensemble forecasts for the case with weak 
LFV, and N = 3554 sets of ensemble forecasts for the case with strong LFV. 
For strong LFV, to keep the same statistical significance as with the case of 
weak LFV, we consider a larger number of ensemble forecasts. This is due 
to the fact that the statistics over these forecasts are performed on two differ-
ent regions of the phase space. Indeed, in the case of strong LFV, the set of 
points xn used to issue forecasts is further divided into two parts that satisfy 
either θo,2 < 0.08 or θo,2 > 0.12. The same decomposition of the phase space 
is used by Vannitsem and Duan (2020) and helps to disentangle the distinctly 
different dynamical behaviors of the two parts, as seen in Figure 1c. In the 
case θo,2 < 0.08, it corresponds to the lower and smoother part of the attrac-
tor, while the case θo,2 > 0.12 corresponds to the higher and more chaotic 
part. The predictability is higher in the lower part, where the atmospheric 
activity is greatly reduced. On the contrary, the predictability is lower in the 
higher part of the attractor where, while still coupled to the ocean, the atmos-
phere is more active (Vannitsem et al., 2015). The results of the ensemble 
forecasts are thus analyzed separately over these two regions of the attractor, 
with Nlow = 1531 forecasts for the lower part, and Nhigh = 2023 for the higher 
one. Finally, we note that in one or two rare occurrences, forecasts had to 
be dropped from the statistics because the adjoint CLVs did not exist. This 
corresponds to peculiar points of the attractor know as tangencies (Xu & 
Paul, 2016; Yang et al., 2009) where a subset of the CLVs are almost aligned 

Experiment
Basis 𝐴𝐴 𝖡𝖡 used for 

projection
Dimension of 

subspace spanned by 𝐴𝐴 𝖡𝖡

Perfect Ensemble e1:36 36 (d)

12 First EOF Modes 𝐴𝐴 𝖴𝖴1∶12  12

EOF Modes 13 to 28 𝐴𝐴 𝖴𝖴13∶28  16

Last 8 EOF Modes 𝐴𝐴 𝖴𝖴29∶36  8

Slow KM Eigenfunctions w1:16 16

Fast KM Eigenfunctions w17:36 20

Slow PF Eigenfunctions ω1:16 16

Fast PF Eigenfunctions ω17:36 20

UNN BLV 𝐴𝐴 𝝋𝝋
−

1∶20
  20

Stable BLV 𝐴𝐴 𝝋𝝋
−

21∶36
  16

UNN CLV φ1:20 20

Stable CLV φ21:36 16

UNN Adjoint CLV 𝐴𝐴 𝝋̃𝝋1∶20  20

Stable Adjoint CLV 𝐴𝐴 𝝋̃𝝋21∶36  16

Recall that the dimension k of the unstable-near-neutral (UNN) subspace is 
20 (See Figure 2a), and the dimension d of the model (1) is 36. The stable 
subspace is considered to be the complement of the UNN subspace. All the 
experiments are conducted with an ensemble of 20 members. The vectors ei 
are the vectors of the canonical basis of 𝐴𝐴 ℝ

𝑑𝑑 .

Table 1 
Description of the Experiments for the Weak Low-Frequency Variability 
Case: Basis 𝐴𝐴 ❇ Used in Equations (11) and (12) to Project the Perturbations 
Used in Turn to Create the Ensemble Initialization. Dimension of the 
Subspace Spanned by the Basis 𝐴𝐴 ❇

Experiment Basis 𝐴𝐴 𝖡𝖡 used for projection
Dimension of 

subspace spanned by 𝐴𝐴 𝖡𝖡

UNN BLV 𝐴𝐴 𝝋𝝋
−

1∶16
  16

Stable BLV 𝐴𝐴 𝝋𝝋
−

17∶36
  20

UNN CLV φ1:16 16

Stable CLV φ17:36 20

UNN Adjoint CLV 𝐴𝐴 𝝋̃𝝋1∶16  16

Stable Adjoint CLV 𝐴𝐴 𝝋̃𝝋17∶36  20

Only the basis different from the weak LFV case (See Table 1) are listed. 
Recall that the dimension k of the unstable-near-neutral (UNN) subspace is 
16 (See Figure 2b), and the dimension d of the model (1) is 36. The basis 
based on Lyapunov vectors are different from the weak LFV case because the 
dimension of the UNN subspace is different for both LFV cases. The stable 
subspace is considered to be the complement of the UNN subspace. All the 
experiments are conducted with an ensemble of 20 members. The vectors ei 
are the vectors of the canonical basis of 𝐴𝐴 ℝ

𝑑𝑑 .

Table 2 
Description of the Experiments for the Strong Low-Frequency Variability 
(LFV) Case: Basis 𝐴𝐴 ❇ Used in Equations (11) and (12) to Project the 
Perturbations Used in Turn to Create the Ensemble Initialization. 
Dimension of the Subspace Spanned by the Basis 𝐴𝐴 ❇
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and therefore the biorthonormal relationship with the adjoint CLVs fails. In this case, we preferred to drop 
completely the corresponding point xn and its ensemble forecast from the statistics.

6.1.  DSSS Skill Scores

For both experiments with weak and strong LFV and for all the initial condition projection methods, we show a 
score based on the DSS discussed in Section 3. First we sum the DSS of each variable inside each of the model 
components to define the components DSS:

DSS�a (�) =
�a
∑

�=1
DSS�a,� (�)

DSS�a (�) =
�a
∑

�=1
DSS�a,� (�)

DSS�o (�) =
�o
∑

�=1
DSS�o,� (�)

DSS�o (�) =
�o
∑

�=1
DSS�o,� (�).

�

For one of the given projection methods detailed in Section 4, the Dawid-Sebastiani skill score (DSSS) of each 
component is then the comparison of the component's DSS of the ensemble forecasts with respect to the compo-
nent's DSS of the perfect ensemble:

DSSSmethod
�a (�) = 1 −

DSSmethod
�a (�)

DSSperfect
�a (�)

DSSSmethod
�a (�) = 1 −

DSSmethod
�a (�)

DSSperfect
�a

(�)

DSSSmethod
�o (�) = 1 −

DSSmethod
�o (�)

DSSperfect
�o (�)

DSSSmethod
�o (�) = 1 −

DSSmethod
�o (�)

DSSperfect
�o

(�)
.

�

This skill score is equal to zero if the DSS of the ensemble forecasts obtained with a given projection method 
have the same DSS as that obtained with the perfect ensemble. The higher the DSSS, the lower the reliability of 
the forecasts provided by the method. The DSSS skill scores of the ensemble forecasts for the cases with weak 
LFV, strong LFV on the lower (and less chaotic) part of the attractor, and strong LFV with developed chaos, are 
shown in Figures 6, 7, and 8, respectively. In addition, the DSS scores and the relation between the ensemble 
spread and the MSE of the ensemble mean are also provided in the Supporting Information. The perturbation 
methods are sorted using the sum of the DSSS scores of the 4 components of the system from the smallest skill 
score to the largest, allowing to see at a glance the best methods found. Four lead times are displayed in order to 
reflect the quality of the methods at both medium-range and sub-seasonal time scales. Three methods consistently 
show  the  best performance at these different lead times, namely the use of the UNN adjoint CLVs, the fast-de-
caying KM and PF eigenfunctions. Better performance is found at medium-range lead times for the UNN adjoint 
CLVs, while at longer sub-seasonal lead times (61 days) the fast-decaying KM and PF eigenfunctions are better.

To interpret this feature let us note first that the KM and PF eigenfunctions approximated by DMD are projections 
of the eigenfunctions of the true Koopman and Perron-Frobenius operators onto the space spanned by the linear 
monomials (i.e., the full state space), respectively (see Sections 4.3.2 and 4.3.3). It seems therefore that perturb-
ing in the (even approximated) invariant subspaces of these operators of the underlying dynamics is crucial to 
preserving the statistical properties of the ensemble distributions with respect to the true forecast distributions.

Similarly, the usefulness of the UNN adjoint CLVs may be related to the fact that the adjoint CLVs can be seen as 
the eigenfunctions of the Koopman operator defined on the tangent space (see Appendix A, Section A3). Again, 
projecting the ensemble initial conditions on these adjoint CLVs can be seen as projecting them onto invariant 
subspaces of the Koopman dynamics on the tangent space. On the contrary, the projections on the CLVs do not 
provide reliable forecasts. These vectors span the modes of the Koopman operator on the tangent space, that are 
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Figure 6.  Dawid-Sebastiani skill score (DSSS) summed over components at different lead times for the case with weak 
low-frequency variability. The lower the DSSS score, the better. The methods are sorted by increasing total score value over 
all four components.
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Figure 7.  Dawid-Sebastiani skill score (DSSS) summed over components at different lead times for the case with strong 
low-frequency variability and for θo,2 < 0.08. The lower the DSSS score, the better. The methods are sorted by increasing total 
score value over all four components.
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Figure 8.  Dawid-Sebastiani skill score (DSSS) summed over components at different lead times for the case with strong 
low-frequency variability and for θo,2 > 0.12. The lower the DSSS score, the better. The methods are sorted by increasing total 
score value over all four components.
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biorthogonal to the eigenfunctions and are not invariant under the forward action of the operator. This apparently 
precludes achieving reliable forecasts.

Additional conclusions that can also be drawn from Figures 6, 7 and 8 are:

1.	 �The EOFs do not provide good overall reliability. In fact, the EOFs generally provide good reliability for only 
one or two variables, but not for all four simultaneously. For instance, projections of the initial conditions onto 
the last 8 EOFs provide reliable forecasts for the ocean, onto EOFs 13–28 provide reliable forecasts of the 
ocean streamfunction, and onto the first 12 EOFs provide reliable forecasts for the atmosphere. This behavior 
of the forecasts initialized with ensembles projected onto EOFs might be due to the fact that they struggle to 
represent the coupled nature of the variability of the ocean-atmosphere system

2.	 �Projection onto the slow-decaying PF eigenfunctions provides reliable ocean forecasts, but not very reli-
able atmospheric forecasts. Recall that similarly, the damped normal modes were originally used in early 
studies with the LIM to predict the evolution of sea surface temperatures in the tropical Pacific (Penland & 
Sardeshmukh, 1995)

3.	 �The fast-decaying PF eigenfunctions provide reliable forecasts, except for the weak LFV experiment at the 
lead time where the errors saturate (around 30 days). However, they provide the more reliable forecasts in the 
lower part of the attractor, in the case of strong LFV

4.	 �Projection onto the Unstable and Near-Neutral (UNN) BLVs provide unreliable forecasts, mostly for the 
ocean temperature, while as shown by Vannitsem and Duan (2020), the Stable BLVs seem to provide better 
reliability in the ocean when looking at the relation between the spread and the MSE (see the Supporting 
Information). However, this has to be contrasted with the poor DSSS obtained for these components, which 
might indicate that the moment of the true forecast distribution is not well represented

5.	 �Projection onto the CLVs of both the UNN and Stable subspace provide poor ensemble initial conditions, the 
former being overdispersive while the latter is underdispersive (see the spread-MSE figures in the Supporting 
Information S1). In addition to the interpretation given above of the CLVs being similar to Koopman modes 
defined on the tangent space, we note that these vectors are covariant with the dynamics and therefore might 
not provide a sufficient dispersion in the directions perpendicular to the flow

6.	 �The Stable subspace adjoint CLVs provides reliable forecasts for the atmospheric components, but less relia-
ble oceanic streamfunction forecasts

6.2.  Relationships Between the Different Perturbation Subspaces

The results of the previous section clearly indicate the importance of initializing the ensemble forecast with 
perturbations that are related with the eigenfunctions of the Koopman and Perron-Frobenius operators. To clarify 
the usefulness of the different subspaces, the angles between the different types of basis vectors are analyzed.

In Figure 9, the average angle between the BLVs and the various exact (the linear approximation of the Koopman 
modes) and adjoint DMD (the linear approximation of the Koopman eigenfunctions) subspaces is shown. An 
interesting feature is that the BLVs from 15 to 36 are better aligned with the fast adjoint DMD subspace than the 
set of BLVs from 1 to 14, providing an alternative explanation of the good performance of this set of vectors in 
ensemble forecasting as discussed and illustrated by Vannitsem and Duan (2020). Note however that the angle 
between these vectors and the fast adjoint DMD subspace is still not negligible (between 20 and 30), a quite 
large misalignment with the fast adjoint DMD, that could explain why the stable BLVs are not as effective as the 
adjoint DMD modes.

An even more interesting result is shown in Figure 10, in which most of the CLVs are rather well-aligned with 
the exact DMD subspace (i.e., the space of Koopman modes) and orthogonal to the adjoint DMD subspace (i.e., 
the space of the Koopman eigenfunctions). This is particularly true for the stable CLVs, which produce unreliable 
forecasts in our experiments. On the contrary, as shown in Figure 11, most of the adjoint CLVs are orthogonal to 
the exact DMD subspace, and aligned with the adjoint DMD subspace. This is particularly true for the slow UNN 
adjoint CLVs, which almost entirely align with the adjoint DMD subspace, and provide the most reliable forecasts 
in our experiments. Similar results have been obtained with the PFMD modes. It thus coherently indicates that 
the adjoint CLVs are very important structures that can considerably improve the ensemble forecasts. Moreover, 
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a decomposition of the observables in terms of the CLVs and the adjoint CLVs on the tangent linear space yields 
a similar structure as the one of the DMD decomposition, as shown in Appendix A, Section A3.

Finally, we note that while the UNN adjoint CLVs yield reliable forecasts, the KM and PF eigenfunctions are 
similar in terms of performance but are much simpler and more straightforward to compute using the DMD 
algorithm. While the computation of the CLVs typically requires the integration of the tangent linear model over 

Figure 9.  Averaged angle in degrees between the Backward Lyapunov Vectors (BLVs) and the Dynamic Modes (DMDs), for: (a) the case with weak low-frequency 
variability and (b) the case with strong low-frequency variability. The one standard deviation intervals are depicted by the shaded area. The slow and fast exact DMD 
subspaces are spanned by the right eigenvectors vi (the DMD modes), for respectively i ∈ {1, …, 16} and i ∈ {17, …, 36}, while the slow and fast adjoint DMD 
subspaces are spanned by the left eigenvectors wi (the KM eigenfunctions), again for respectively i ∈ {1, …, 16} and i ∈ {17, …, 36}. See Section 5 for an explanation 
of the slow-fast separation on the modes and eigenfunctions. Note that due to the biorthormality relationship Equation (32) between the vectors vi and wi, the slow exact 
DMD subspace is orthogonal to the fast adjoint DMD subspace, while the fast exact DMD subspace is orthogonal to the slow adjoint DMD subspace. The separation 
between the BLVs belonging to the UNN and stable subspace is depicted by a vertical dashed line.

Figure 10.  Averaged angle in degrees between the Covariant Lyapunov Vectors (CLVs) and the Dynamic Modes (DMDs), for: (a) the case with weak low-frequency 
variability and (b) the case with strong low-frequency variability. The one standard deviation intervals are depicted by the shaded area. The slow and fast exact DMD 
subspaces are spanned by the right eigenvectors vi (the DMD modes), for respectively i ∈ {1, …, 16} and i ∈ {17, …, 36}, while the slow and fast adjoint DMD 
subspaces are spanned by the left eigenvectors wi (the KM eigenfunctions), again for respectively i ∈ {1, …, 16} and i ∈ {17, …, 36}. See Section 5 for an explanation 
of the slow-fast separation on the modes and eigenfunctions. Note that due to the biorthormality relationship Equation (32) between the vectors vi and wi, the slow exact 
DMD subspace is orthogonal to the fast adjoint DMD subspace, while the fast exact DMD subspace is orthogonal to the slow adjoint DMD subspace. The separation 
between the CLVs belonging to the UNN and stable subspace is depicted by a vertical dashed line.
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long time periods, both forward and reverse in time, the KM and PF eigenfunctions can be computed from data 
produced either by numerical simulations, observational analysis products, or reanalysis products, requiring only 
an efficient algorithm to perform the SVD decomposition.

7.  Conclusions
In this work, the impact of the choice of the initial perturbations on ensemble forecasts of coupled ocean-atmos-
phere systems has been addressed by investigating a reduced-order coupled model. Different types of perturba-
tions have been selected, including traditional approaches like the EOFs and the Lyapunov vectors, but also novel 
approaches based on the DMD which has been noted in recent years as a reasonable computational approxima-
tion of the modes and eigenfunctions of the Koopman and Perron-Frobenius operators (Rowley et al., 2009; Tu 
et al., 2014). After a detailed analysis of the different definitions of the DMD modes that are found in the litera-
ture, their use as a basis for initializing ensemble forecasts was explored.

A key result is that projecting initial perturbations onto the fast-decaying KM eigenfunctions and PF eigenfunc-
tions – which refer here to linear approximations of the eigenfunctions of the Koopman and Perron-Frobenius 
operators – provides reliable ensemble forecasts in the system at hand and at the considered lead times. This 
further suggests that these eigenfunctions are essential for providing reliable ensemble forecasts. Moreover, they 
seems to be less sensitive to the model's regime and local predictability than other methods. Another important 
result is the usefulness of the adjoint CLVs, which can be seen as eigenfunctions of the Koopman operator in 
the tangent space of the system trajectory. The adjoint CLVs also provide reliable ensemble forecasts, and may 
perform even better than the KM and PF eigenfunctions when chaos is more developed. However, a key differ-
ence between the KM and PK eigenfunctions and the adjoint CLVs lies in the fact that the former are defined 
globally over the attractor of the system, while the latter are local properties of the flow. In an operational 
setting, the adjoint CLVs would therefore be quite difficult to compute. On the other hand, it is straightforward to 
compute an estimate of the KM and PF eigenfunctions directly from data with the DMD method, which provides 
significant flexibility in their computation and use.

This thought experiment should now be expanded in a more realistic setting by investigating the use of these tools 
in intermediate order climate models. In this framework, a first research question is related to the validity of the 
DMD-estimated KM spectrum of the systems being considered: In the present considered system, spectra that 

Figure 11.  Averaged angle in degrees between the adjoint Covariant Lyapunov Vectors (Ad. CLVs) and the Dynamic Modes (DMDs), for: (a) the case with weak 
low-frequency variability and (b) the case with strong low-frequency variability. The one standard deviation intervals are depicted by the shaded area. The slow and 
fast exact DMD subspaces are spanned by the right eigenvectors vi (the DMD modes), for respectively i ∈ {1, …, 16} and i ∈ {17, …, 36}, while the slow and fast 
adjoint DMD subspaces are spanned by the left eigenvectors wi (the KM eigenfunctions), again for respectively i ∈ {1, …, 16} and i ∈ {17, …, 36}. See Section 5 for 
an explanation of the slow-fast separation on the modes and eigenfunctions. Note that due to the biorthormality relationship Equation (32) between the vectors vi and 
wi, the slow exact DMD subspace is orthogonal to the fast adjoint DMD subspace, while the fast exact DMD subspace is orthogonal to the slow adjoint DMD subspace. 
The separation between the adjoint CLVs belonging to the UNN and stable subspace is depicted by a vertical dashed line.
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are clearly identifiable and separable were found. However, it is known that chaotic systems possess complicated 
spectra (Arbabi & Mezić, 2017; Mezić, 2020) which contains continuous components. These complicated spec-
tra might hamper the application of the present method to real datasets or to high-resolution models, the DMD 
analysis providing too few relevant patterns to work with. This will have to be investigated, notably in systems 
where the dimension is too high to apply the DMD method directly, and have thus to be reduced first. A part of 
this investigation will have to be concerned by the definition of the appropriate observables for the problem. For 
instance, in the present case, the observables g in Equation (25) and h in Equation (39) were chosen as the iden-
tity because the variables of the underlying system itself were observed, but this might not be realizable in very 
high-dimensional systems. In this case, other indirect observables would have to be considered and the  informa-
tion hence gained with them will have to be transferred back to the model level. Other typical issues of the data 
assimilation framework such as noisy or sparse observations could also arise and will have to be addressed.

Another research question concerns the other sources of uncertainty affecting the ensemble forecasts. As previ-
ously noted, systematic errors in the forecast model share roughly equal importance with the specification of 
initial conditions in producing accurate and reliable forecasts. In an operational setting, it is important to take 
these systematic model errors into account. A possible path forward is to evaluate the projection of assumed 
model errors onto the KM or PF eigenfunctions, and randomly perturbing the model in that direction. This ques-
tion will be explored in the future in the context of the current model.

Note that the question of the optimal size of the ensemble for the projected initial conditions has not been consid-
ered in the present work. Indeed, the ensemble size could also be reduced and tuned according to the dimension 
of the subspaces on which the initial conditions are projected onto. Here, for the sake of simplicity, we considered 
ensembles of fixed size with 20 members, which is sufficient to obtain a reliable reference ‘‘perfect’’ ensemble 
for the system at hand but the size of the ‘‘projected’’ ensembles could be reduced and their reliability then eval-
uated with respect to the reference ensemble. This aspect is envisaged for a future study.

Finally, a few important steps toward an operational implementation of the DMD approach are still needed: First 
to investigate the impact of data assimilation on the statistics of the initial error and their projections on the KM 
and PF eigenfunctions, and second to compare the DMD approach to the singular vector techniques that are often 
used for ensemble initialization and for the propagation of the error covariances, for example, (Ehrendorfer & 
Tribbia, 1997). These steps are planned in a future investigation.

Appendix A:  Lyapunovs Vectors (BLVs, CLVs, and Their Adjoints)
In dynamical systems described by a set of ODEs like Equation (1), vectors can be defined to describe the local 
linear stability around its solutions. These vectors can be obtained by considering the linearization of Equa-
tion (1) around such a solution x(τ):

̇𝜹𝜹𝜹𝜹(𝜏𝜏) =
𝜕𝜕𝒇𝒇

𝜕𝜕𝒙𝒙

||||𝒙𝒙(𝜏𝜏)
𝜹𝜹𝜹𝜹(𝜏𝜏)� (A1)

where ∂f/∂x is the Jacobian matrix of f. The solution of the linearized equation can be formally written as

𝜹𝜹𝜹𝜹(𝑡𝑡) = 𝖬𝖬 (𝑡𝑡𝑡 𝑡𝑡0) 𝜹𝜹𝜹𝜹0, 𝜹𝜹𝜹𝜹0 = 𝜹𝜹𝜹𝜹 (𝑡𝑡0)� (A2)

where 𝐴𝐴 𝖬𝖬 (𝑡𝑡𝑡 𝑡𝑡0) = ∇
𝒙𝒙(𝑡𝑡0)𝝓𝝓

𝑡𝑡−𝑡𝑡0 is the fundamental matrix of solutions of the system Equation (A1), that is, the Jaco-
bian matrix of the flow 𝐴𝐴 𝝓𝝓

𝑡𝑡−𝑡𝑡0 of Equation (1), and is thus identified with the linear propagator that propagates the 
perturbations in the tangent space of x(τ) between the times t0 and t. Like the model given by Equation (1), the 
dimension of the tangent linear model provided by Equation (A1) is d.

A1.  Osedelets Splitting of the Tangent Space

The Osedelets theorem (Oseledets, 1968, 2008) states that the term 𝐴𝐴
(
𝖬𝖬 (𝑡𝑡𝑡 𝑡𝑡0)𝖬𝖬(𝑡𝑡𝑡 𝑡𝑡0)

𝖳𝖳
)1∕(2(𝑡𝑡−𝑡𝑡0)) is well defined 

in the limit t0 → ∞. Its eigenvectors and the logarithm of its eigenvalues are respectively the Backward Lyapunov 
Vectors (BLVs) 𝐴𝐴 𝝓𝝓

−
𝑖𝑖
(𝑡𝑡) at the time t and the Lyapunov exponents σi of the system. The set of the Lyapunov expo-

nents is sometimes called the Lyapunov spectrum and is assumed here to be sorted in decreasing order. For the 
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sake of simplicity, we present here the case where there are no degenerate Lyapunov exponents in the spectrum. 
The general case is presented in Kuptsov and Parlitz (2012).

The vectors 𝐴𝐴 𝝓𝝓
−
𝑖𝑖
(𝑡𝑡) are orthogonal and span a set of subspaces

𝑆𝑆
−
𝑗𝑗
(𝑡𝑡) = span

{
𝝓𝝓

−
𝑖𝑖
(𝑡𝑡)|𝑖𝑖 = 1, 2,… , 𝑗𝑗

}
, 𝑗𝑗 = 1,… , 𝑑𝑑� (A3)

toward which any j-arbitrary volume Vj(t0) (dim Vj(t0) = j) defined at a time t0 in the far past converges under the 
action of the propagator:

lim
𝑡𝑡0→−∞

𝖬𝖬 (𝑡𝑡𝑡 𝑡𝑡0)𝑉𝑉𝑗𝑗 (𝑡𝑡0) ⊂ 𝑆𝑆
−
𝑗𝑗
(𝑡𝑡).� (A4)

By construction, we have 𝐴𝐴 𝐴𝐴
−

1
⊂ 𝑆𝑆

−

2
⊂ ⋯ ⊂ 𝑆𝑆

−

𝑑𝑑−1
⊂ 𝑆𝑆

−

𝑑𝑑
 which is called a Osedelets splitting of the tangent space 

at the time t (Kuptsov & Parlitz, 2012). The BLVs thus span and describe volumes of the tangent space that are 
reached asymptotically at a given time by arbitrary volumes defined in the far past, and are thus preserved under 
the tangent flow

𝖬𝖬 (𝑡𝑡𝑡 𝑡𝑡0)𝑆𝑆
−
𝑗𝑗
(𝑡𝑡0) = 𝑆𝑆

−
𝑗𝑗
(𝑡𝑡).� (A5)

Similarly, one can take the limit of the matrix 𝐴𝐴
(
𝖬𝖬(𝑡𝑡𝑡 𝑡𝑡0)

𝖳𝖳
𝖬𝖬 (𝑡𝑡𝑡 𝑡𝑡0)

)1∕(2(𝑡𝑡−𝑡𝑡0)) for t → ∞ and its eigenvectors are the 
Forward Lyapunov Vectors (FLVs) 𝐴𝐴 𝝓𝝓

+

𝑖𝑖
(𝑡𝑡) . Its eigenvalues are also the Lyapunov exponents σi. The vectors 𝐴𝐴 𝝓𝝓

+

𝑖𝑖
(𝑡𝑡) 

are orthogonal as well and span a set of subspaces

𝑆𝑆
+

𝑗𝑗
(𝑡𝑡) = span

{
𝝓𝝓

+

𝑖𝑖
(𝑡𝑡)|𝑖𝑖 = 𝑗𝑗𝑗 𝑗𝑗 + 1,… , 𝑑𝑑

}
, 𝑗𝑗 = 1,… , 𝑑𝑑� (A6)

toward which any arbitrary j-volume Vj(t) (dim Vj(t) = j) defined at a time t in the far future converges under the 
action of the time-reversed propagator:

lim
𝑡𝑡→∞

𝖬𝖬 (𝑡𝑡0, 𝑡𝑡)𝑉𝑉𝑗𝑗(𝑡𝑡) ⊂ 𝑆𝑆
+
𝑗𝑗
(𝑡𝑡0) .� (A7)

By construction, we have the sequence 𝐴𝐴 𝐴𝐴
+

𝑑𝑑
⊂ 𝑆𝑆

+

𝑑𝑑−1
⊂ ⋯ ⊂ 𝑆𝑆

+

2
⊂ 𝑆𝑆

+

1
 which forms another Osedelets splitting of 

the tangent space at the time t0. The FLVs thus span and describe volumes of the tangent space that are reached 
asymptotically - under the evolution of the time-reversed tangent flow - at a given time by arbitrary volumes 
defined in the far future. These volumes are thus preserved under the time-reversed tangent flow

𝖬𝖬 (𝑡𝑡0, 𝑡𝑡)𝑆𝑆
+

𝑗𝑗
(𝑡𝑡) = 𝑆𝑆

+

𝑗𝑗
(𝑡𝑡0) .� (A8)

A2.  Covariant Lyapunov Vectors and Their Adjoint

The Covariant Lyapunov Vectors (CLVs) are vectors ϕi such that when the linear propagator 𝐴𝐴 𝖬𝖬 is applied to them, 
one obtains

𝖬𝖬 (𝑡𝑡𝑡 𝑡𝑡0) 𝝓𝝓𝑖𝑖
(𝑡𝑡0) = Λ𝑖𝑖 (𝑡𝑡𝑡 𝑡𝑡0) 𝝓𝝓𝑖𝑖

(𝑡𝑡).� (A9)

and the linearized dynamics Equation (A2) transports the CLVs from a time t0 onto the CLVs at time t further 
downstream the trajectory x(τ) by multiplying by a stretching factor Λi (Gaspard, 2005; Kuptsov & Parlitz, 2012). 
The CLVs can thus be shown to be the solutions of the equation

𝝓̇𝝓
𝑖𝑖
(𝜏𝜏) =

𝜕𝜕𝒇𝒇

𝜕𝜕𝒙𝒙

||||𝒙𝒙(𝜏𝜏)
𝝓𝝓

𝑖𝑖
(𝜏𝜏) − 𝜒𝜒𝑖𝑖(𝜏𝜏)𝝓𝝓𝑖𝑖

(𝜏𝜏)� (A10)

with

Λ𝑖𝑖 (𝑡𝑡𝑡 𝑡𝑡0) = exp

{

∫

𝑡𝑡

𝑡𝑡0

𝜒𝜒𝑖𝑖(𝜏𝜏) d𝜏𝜏

}
� (A11)
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where χi(τ) is the local stretching rate at time τ. The global Lyapunov exponents of the system are recovered in 
the limit as t → ∞,

𝜎𝜎𝑖𝑖 = lim
𝑡𝑡→∞

1

𝑡𝑡
ln |Λ𝑖𝑖 (𝑡𝑡𝑡 𝑡𝑡0) | = lim

𝑡𝑡→∞

1

𝑡𝑡 ∫

𝑡𝑡

𝑡𝑡0

𝜒𝜒𝑖𝑖(𝜏𝜏) d𝜏𝜏𝜏� (A12)

By definition, each CLV lies at the intersection between the Osedelets subspaces 𝐴𝐴 𝐴𝐴
−
𝑗𝑗
 and 𝐴𝐴 𝐴𝐴

+

𝑗𝑗
 (Eckmann & 

Ruelle, 1985),

𝝓𝝓
𝑗𝑗
(𝑡𝑡) ∈ 𝑆𝑆

+
𝑗𝑗
(𝑡𝑡) ∩ 𝑆𝑆

−
𝑗𝑗
(𝑡𝑡).� (A13)

The linear propagator 𝐴𝐴 𝖬𝖬 can be decomposed in terms of the CLVs ϕi and their corresponding stretching factors 
Λi as

𝖬𝖬 (𝑡𝑡𝑡 𝑡𝑡0) =

𝑑𝑑∑

𝑖𝑖=1

𝝓𝝓
𝑖𝑖
(𝑡𝑡)Λ𝑖𝑖 (𝑡𝑡𝑡 𝑡𝑡0) 𝝓̃𝝓

𝖳𝖳

𝑖𝑖
(𝑡𝑡0)� (A14)

where the vectors 𝐴𝐴 𝝓̃𝝓
𝑖𝑖
 are the adjoint Covariant Lyapunov Vectors satisfying the biorthonormality relation with 

the CLVs:

𝝓̃𝝓

𝖳𝖳

𝑖𝑖
𝝓𝝓

𝑗𝑗
= 𝛿𝛿𝑖𝑖𝑖𝑖𝑖� (A15)

at any point of the phase space of the system (Gaspard, 2005). The adjoint CLVs are solutions of the adjoint of 
Equation (A10),

̇̃
𝝓𝝓

𝑖𝑖
(𝜏𝜏) =

𝜕𝜕𝒇𝒇

𝜕𝜕𝒙𝒙

𝖳𝖳|||||𝒙𝒙(𝜏𝜏)
𝝓̃𝝓

𝑖𝑖
(𝜏𝜏) − 𝜒𝜒𝑖𝑖(𝜏𝜏) 𝝓̃𝝓𝑖𝑖

(𝜏𝜏)� (A16)

and are covariant with respect to the adjoint dynamics,

𝖦𝖦 (𝑡𝑡𝑡 𝑡𝑡0) 𝝓̃𝝓𝑖𝑖
(𝑡𝑡0) = Λ−1

𝑖𝑖
(𝑡𝑡𝑡 𝑡𝑡0) 𝝓̃𝝓𝑖𝑖

(𝑡𝑡)� (A17)

with 𝐴𝐴 𝖦𝖦 (𝑡𝑡𝑡 𝑡𝑡0) =
(
𝖬𝖬(𝑡𝑡𝑡 𝑡𝑡0)

−1
)𝖳𝖳 , but they are multiplied by the inverse of the stretching factor (Kuptsov & 

Parlitz,  2012). Note that both Equations  (A9) and (A17) are time-reversible, with the property imposed by 
Equation (A11) that the stretching factors are inverted upon time-reversal, 𝐴𝐴 Λ𝑖𝑖 (𝑡𝑡𝑡 𝑡𝑡0) = Λ−1

𝑖𝑖
(𝑡𝑡0, 𝑡𝑡) . By definition, 

each adjoint CLV lies at the intersection between the adjoint Osedelets subspaces 𝐴𝐴 𝐴𝐴
+

𝑗𝑗
 and 𝐴𝐴 𝐴𝐴

−
𝑗𝑗
 (Eckmann & 

Ruelle, 1985),

�̃�(�) ∈ �+
� (�) ∩�−

� (�)� (A18)

which are preserved under the adjoint tangent flow:

𝖦𝖦 (𝑡𝑡𝑡 𝑡𝑡0)𝐻𝐻
+

𝑗𝑗
(𝑡𝑡0) = 𝐻𝐻

+

𝑗𝑗
(𝑡𝑡),� (A19)

𝖦𝖦 (𝑡𝑡𝑡 𝑡𝑡0)𝐻𝐻
−
𝑗𝑗
(𝑡𝑡0) = 𝐻𝐻

−
𝑗𝑗
(𝑡𝑡).� (A20)

These subspaces form Osedelets splittings of the tangent space as well,

𝐻𝐻
+

𝑗𝑗
(𝑡𝑡) = span

{
𝝓𝝓

+

𝑖𝑖
(𝑡𝑡)|𝑖𝑖 = 1, 2,…, 𝑗𝑗

}
,� (A21)

𝐻𝐻
−
𝑗𝑗
(𝑡𝑡) = span

{
𝝓𝝓

−
𝑖𝑖
(𝑡𝑡)|𝑖𝑖 = 𝑗𝑗𝑗 𝑗𝑗 + 1,…, 𝑑𝑑

}
,� (A22)

∀𝑗𝑗 = 1,… , 𝑑𝑑𝑑�

To summarize, the BLVs and FLVs can be interpreted as orthonormal basis of vectors defining volumes preserved 
by the dynamics, while the CLVs and adjoint CLVs define directions in the tangent space that are covariant with 
the dynamics.
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A3.  Koopman Operator of the Tangent Flow

For a given observable g of a system like Equation (1), the time-evolution starting at time t0 = 0 of the observables 
in the neighborhood of a given state x0 can be approximated by

�� (�0 + ��0) = �
(

�� (�0 + ��0)
)

≈ �
(

�� (�0) +
(

∇�0�
�) ��0

)

≈ �
(

�� (�0)
)

+
(

∇��(�0)�
)�

(

∇�0�
�) ��0

= �
(

�� (�0)
)

+
(

∇��(�0)�
)�

�(�, 0) ��0

� (A23)

on the other hand, one can naturally define a Koopman operator 𝐴𝐴 
𝑡𝑡

𝒙𝒙0
 on the tangent linear space of a given trajec-

tory ϕ t (x0), its expression being


𝑡𝑡

𝒙𝒙0
𝑔̄𝑔(𝜹𝜹𝜹𝜹) = 𝑔̄𝑔

(
𝝓̄𝝓

𝑡𝑡

𝒙𝒙0
(𝜹𝜹𝜹𝜹)

)
= 𝑔̄𝑔(𝖬𝖬(𝑡𝑡𝑡 0) 𝜹𝜹𝜹𝜹)� (A24)

where 𝐴𝐴 𝝓̄𝝓

𝑡𝑡

𝒙𝒙0
 and 𝐴𝐴 𝐴𝐴𝐴 are respectively the flow and an observable defined on the tangent linear space. The action of 

the Koopman operator 𝐴𝐴 
𝑡𝑡 of system Equation (1) approximated by Equation (A23) in a neighborhood of x0 can 

thus be rewritten


𝑡𝑡
𝑔𝑔 (𝒙𝒙0 + 𝜹𝜹𝜹𝜹0) ≈ 

𝑡𝑡
𝑔𝑔 (𝒙𝒙0) + 

𝑡𝑡

𝒙𝒙0
𝑔̄𝑔 (𝜹𝜹𝜹𝜹0)� (A25)

with

𝑔̄𝑔(𝜹𝜹𝜹𝜹) = (∇𝒙𝒙𝑔𝑔)
𝖳𝖳
𝜹𝜹𝜹𝜹.� (A26)

Using the decomposition Equation (A14), we get then:


𝑡𝑡

𝒙𝒙0
𝑔̄𝑔 (𝜹𝜹𝜹𝜹0) =

𝑑𝑑∑

𝑖𝑖=1

(
∇

𝝓𝝓
𝑡𝑡(𝒙𝒙0)𝑔𝑔

)𝖳𝖳

𝝓𝝓
𝑖𝑖
(𝑡𝑡)Λ𝑖𝑖(𝑡𝑡𝑡 0)𝝓̃𝝓

𝖳𝖳

𝑖𝑖
(0) 𝜹𝜹𝜹𝜹0� (A27)

and from this equation, one can see that similarly to the DMD left eigenvectors for the Koopman operator 𝐴𝐴 
𝑡𝑡 

presented in Section 4.3.2, the adjoint CLVs provide an analogy for the “eigenfunctions” of the first-order Koop-
man operator 𝐴𝐴 

𝑡𝑡

𝒙𝒙0
 (in particular, compare Equation (A28) with Equation (33)), whose representation is provided 

by the linear propagator 𝐴𝐴 𝖬𝖬 . Indeed, if one considers the functions

𝜙𝜙
TL

𝑖𝑖
(𝜹𝜹𝜹𝜹, 𝜏𝜏) = 𝝓̃𝝓

𝖳𝖳

𝑖𝑖
(𝜏𝜏) 𝜹𝜹𝜹𝜹� (A28)

it is straightforward, using Equation (A14), that

 �−�
�0 �TL

� (��, �) = �̃�
� (�)�(�, �) ��

= Λ�(�, �) �̃
�
� (�) ��

= Λ�(�, �)�TL
� (��, �)

� (A29)

on the other hand, one can now rewrite Equation (A27) as


𝑡𝑡

𝒙𝒙0
𝑔̄𝑔 (𝜹𝜹𝜹𝜹0) =

𝑑𝑑∑

𝑖𝑖=1

𝑐𝑐
TL

𝑖𝑖
(𝑡𝑡) Λ𝑖𝑖(𝑡𝑡𝑡 0)𝜙𝜙

TL

𝑖𝑖
(𝜹𝜹𝜹𝜹0, 0)� (A30)

where 𝐴𝐴 𝐴𝐴
TL

𝑖𝑖
(𝑡𝑡) = (∇𝒙𝒙(𝑡𝑡)𝑔𝑔)

𝖳𝖳
𝝓𝝓

𝑖𝑖
(𝑡𝑡) and we see that the CLVs span the space of the “Koopman modes” of the operator 

𝐴𝐴 
𝑡𝑡

𝒙𝒙0
 . This was shown here with the particular observable Equation (A26), but remains valid for any observable 

defined on the tangent space.

Therefore Equation (A30) is analogous to Equations (21) and (35), and the discussion in Section 4.3.4 about 
ensemble projections remains appropriate here. Projecting an ensemble of initial conditions 𝐴𝐴 𝜹𝜹𝜹𝜹

𝑚𝑚

0
 on subspaces 

spanned by the adjoint CLVs and propagating them is tantamount to projecting on invariant subspaces of the 
Koopman operator 𝐴𝐴 

𝑡𝑡

𝒙𝒙0
 .
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Appendix B:  Experiments Algorithm

Algorithm 1.  General Algorithm for the Experiments

R�equire: methodList, Stride, ensemble size M, perturbation size ɛ, Δt, forecast length T
 �1:	� Integrate model Equation (1) over a long transient time to obtain an initial condition on the attractor
 �2:	� Integrate model Equation (1) for a long time from the previously obtained initial condition to get a long 

reference trajectory
 �3:	� Save the states xn, n = 1, …, N of this trajectory every Δt MTU
 �4:	� Compute the BLVs 𝐴𝐴 𝚽𝚽

−
𝑖𝑖
 and FLVs 𝐴𝐴 𝚽𝚽

+

𝑖𝑖
 for i = 1, …, d along the reference trajectory at the saved states xn with 

the Benettin algorithm (Benettin et al., 1980)
 �5:	� Compute the CLVs 𝐴𝐴 𝚽𝚽𝑖𝑖, i = 1, …, d by finding the intersection of the subspaces spanned by the BLVs and 

FLVs (see Eckmann and Ruelle (1985)) along the reference trajectory at the saved states xn

 �6:	� Compute the adjoint CLVs 𝐴𝐴 𝚽̃𝚽𝑖𝑖, 𝑖𝑖 = 1,… , 𝑑𝑑 with the biorthonormality relation Equation (A15) at the saved 
states xn

 �7:	� Compute the adjoint DMDs (the KM eigenvectors) wi, i = 1, …, d according to Section 4.3.2, see Algorithm 2 
below

 �8:	� Compute the PF eigenvectors ωi, i = 1, …, d according to Section 4.3.3, see Algorithm 3 below
 �9:	� Compute the eigenvectors of the covariance matrix of the saved states xn to get the EOFs 𝐴𝐴 𝖴𝖴𝑖𝑖, 𝑖𝑖 = 1,… , 𝑑𝑑

1�0:	� s ← Stride � ⊳ Select a state every s states as reference initial condition
1�1:	� for method in methodList do � ⊳ Loop over the initialization methods
1�2:	� for n = 1, 1 + s, 1 + 2s, …, N do � ⊳ Loop over the selected reference states xn

1�3:	� 𝐴𝐴 𝐴𝐴𝐴𝐴
ctrl

0,𝑖𝑖
∼ 𝑈𝑈 [−𝜀𝜀∕2, 𝜀𝜀∕2] for 𝑖𝑖 = 1,… , 𝑑𝑑 � ⊳ Draw the components of the perturbation yielding the 

control run initial condition
1�4:	� 𝐴𝐴 𝒙𝒙

ctrl
𝑛𝑛 ←𝒙𝒙𝑛𝑛 + 𝜹𝜹𝜹𝜹

ctrl

0
 � ⊳ Get the control run initial condition by perturbing the truth

1�5:	� 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑚𝑚

0,𝑖𝑖
∼ 𝑈𝑈 [−𝜀𝜀∕2, 𝜀𝜀∕2] for 𝑖𝑖 = 1,… , 𝑑𝑑𝑑 for 𝑚𝑚 = 1,… ,𝑀𝑀 − 1.� ⊳ Draw the components of the 

perturbation yielding the ensemble run initial condition
1�6:	� 𝐴𝐴 𝜹𝜹𝜹𝜹

𝑀𝑀

0
←0 � ⊳ M-th ensemble member is the control run

1�7:	� Construct the projector Π with Equation (11) from the method's selected base 𝐴𝐴 𝖡𝖡, which possibly depends 
on the state xn (𝐴𝐴 Π = 𝖨𝖨 for the perfect ensemble, where 𝐴𝐴 𝖨𝖨 is the identity matrix)

1�8:	� 𝐴𝐴 𝜹𝜹𝜹𝜹
′𝑚𝑚

0
←Π 𝜹𝜹𝜹𝜹

𝑚𝑚

0
. � ⊳ Project the ensemble random perturbations

1�9:	� �′
�,�←�ctrl

� + ��′�
0 , for � = 1,… ,�� ⊳ Obtain the ensemble projected initial conditions

2�0:	� Integrate Equation (1) with the ensemble initial conditions 𝐴𝐴 𝒚𝒚
′
𝑚𝑚𝑚𝑚𝑚

 over a time T
2�1:	� Compare the trajectory obtained with the reference trajectory and compute the MSE, Spread 2 and the 

DSS
2�2:	� Average the MSE, Spread 2 and the DSS over the selected reference state xn

2�3:	� Save the results obtained for method

Algorithm 2.  Algorithm to Compute the Dynamic Mode Decomposition Modes (and their adjoints)

R�equire: Reference trajectory states xn, n = 1, …, N
 �1:	𝐴𝐴 𝖷𝖷𝖷 [𝒙𝒙1,… ,𝒙𝒙𝑁𝑁−1]� ⊳ Prepare snapshot matrices
 �2:	𝐴𝐴 𝖸𝖸𝖸 [𝒙𝒙2,… ,𝒙𝒙𝑁𝑁 ]

 �3:	𝐴𝐴 𝖴𝖴,Σ,𝖵𝖵∗
←SVD(𝖷𝖷)� ⊳ Compute the SVD decomposition of 𝐴𝐴 𝖷𝖷

 �4:	𝐴𝐴 𝖬̃𝖬
DMD

←𝖴𝖴
∗
𝖸𝖸𝖸𝖸Σ−1� ⊳ Compute the reduced operator Equation (31)

 �5:	� 𝐴𝐴 𝒗̃𝒗𝑖𝑖, 𝒘̃𝒘𝑖𝑖, 𝜆𝜆
DMD

𝑖𝑖
←eig

(
𝖬̃𝖬

DMD
)
for 𝑖𝑖 = 1,… , 𝑑𝑑� ⊳ Compute the right and left eigenvectors of the reduced 

operator, and their eigenvalues
 �6:	𝐴𝐴 𝒗𝒗𝑖𝑖←

1

𝜆𝜆
DMD

𝑖𝑖

𝖸𝖸𝖸𝖸Σ−1
𝒗𝒗𝑖𝑖 for 𝑖𝑖 = 1,… , 𝑑𝑑� ⊳ Compute the DMD modes

 �7:	𝐴𝐴 𝒘𝒘𝑖𝑖←𝖴𝖴 𝒘̃𝒘𝒊𝒊 for 𝑖𝑖 = 1,… , 𝑑𝑑� ⊳ Compute the adjoint DMD modes
 �8:	 The sought KM eigenfunctions Equation (33) are provided by the adjoint DMD modes wi
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Data Availability Statement
The code used to obtain the trajectories and Lyapunov vectors of the VDDG model is qgs (Demaeyer et al., 2020). 
It is available at https://github.com/Climdyn/qgs and on Zenodo (Demaeyer & De Cruz, 2021). The additional 
notebooks computing the experiments and their analysis have been released on Zenodo (Demaeyer, 2022) and are 
also available at https://github.com/jodemaey/Identifying_IC4S2S_notebooks.
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Algorithm 3.  Algorithm to Compute the Perron-Frobenius Mode Decomposition Modes

R�equire: Reference trajectory states xn, n = 1, …, N
 �1:	� 𝐴𝐴 𝖷𝖷𝖷 [𝒙𝒙1,… ,𝒙𝒙𝑁𝑁−1]� ⊳ Prepare snapshot matrices
 �2:	� 𝐴𝐴 𝖸𝖸𝖸 [𝒙𝒙2,… ,𝒙𝒙𝑁𝑁 ]

 �3:	� 𝐴𝐴 𝖠𝖠𝖠𝖠𝖠𝖠𝖠
∗

 �4:	� 𝐴𝐴 𝖦𝖦𝖦𝖦𝖦𝖦𝖦
∗

 �5:	� 𝐴𝐴 𝖬𝖬
PFMD

←𝖠𝖠
𝖳𝖳
(𝖦𝖦

+
)
𝖳𝖳� ⊳ Compute the Perron-Frobenius operator matrix representation

 �6:	� 𝐴𝐴 𝝂𝝂𝑖𝑖,𝝎𝝎𝑖𝑖, 𝜆𝜆
PFMD

𝑖𝑖
←eig

(
𝖬𝖬

PFMD
)
for 𝑖𝑖 = 1,… , 𝑑𝑑�  ⊳ Compute the right and left eigenvectors of the operator, 

and their eigenvalues
 �7:	� The sought PF eigenfunctions Equation (38) are provided by the left eigenvectors ωi
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